Enhanced integrated therapy for breast cancer employing Honokiol-loaded mesoporous polydopamine nanoparticles in conjunction with photothermal effects and low-dose metformin.

IF 6.6 3区 医学 Q1 ENGINEERING, BIOMEDICAL APL Bioengineering Pub Date : 2025-03-19 eCollection Date: 2025-03-01 DOI:10.1063/5.0256571
Qianqian Du, Qianfan Zhang, Jialing Li, Xiaofei Wang, Xiangyu Gao, Guangyuan Tan, Qian Feng, Jigang Li, Yanchun Meng, Yongsheng Yu
{"title":"Enhanced integrated therapy for breast cancer employing Honokiol-loaded mesoporous polydopamine nanoparticles in conjunction with photothermal effects and low-dose metformin.","authors":"Qianqian Du, Qianfan Zhang, Jialing Li, Xiaofei Wang, Xiangyu Gao, Guangyuan Tan, Qian Feng, Jigang Li, Yanchun Meng, Yongsheng Yu","doi":"10.1063/5.0256571","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer remains a significant global health challenge, emphasizing the pressing need for innovative therapeutic approaches. Our thorough research investigates the potential of mesoporous polydopamine nanoparticles (MPDA) as a targeted treatment for breast cancer. Meticulously crafted, these nanoparticles were loaded with honokiol (HK), which is a natural product, and then coated with functionalized hyaluronic acid (HA) to boost their ability to target breast cancer cells that overexpress CD44 receptors. The deep penetrating and photothermal (PTT) composite nanosystem combined with low-dose metformin (Met) improves the efficacy of synergetic therapy against breast tumors. The designed nanosystem exhibited exceptional biocompatibility and stability, suggesting its suitability for therapeutic use. Our <i>in vitro</i> studies demonstrated that the nanosystem precisely targeted and penetrated breast cancer cells, resulting in significant cell death. Additionally, <i>in vivo</i> studies showed that the nanosystem markedly inhibited tumor growth compared to the control group. This tumor-inhibiting effect was due to the combined action of the encapsulated HK, free Met, and the photothermal effect induced by near-infrared laser irradiation. This combination potently stimulates the expression of cleaved caspase-3 and cleaved PARP proteins, ultimately triggering cell apoptosis and effectively curbing tumor proliferation. Our research not only underscores the promising potential of nanoparticles for targeted breast cancer therapy but also sets the stage for further exploration and development of novel nanomedicine-based therapeutic strategies.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"9 1","pages":"016115"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925484/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0256571","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer remains a significant global health challenge, emphasizing the pressing need for innovative therapeutic approaches. Our thorough research investigates the potential of mesoporous polydopamine nanoparticles (MPDA) as a targeted treatment for breast cancer. Meticulously crafted, these nanoparticles were loaded with honokiol (HK), which is a natural product, and then coated with functionalized hyaluronic acid (HA) to boost their ability to target breast cancer cells that overexpress CD44 receptors. The deep penetrating and photothermal (PTT) composite nanosystem combined with low-dose metformin (Met) improves the efficacy of synergetic therapy against breast tumors. The designed nanosystem exhibited exceptional biocompatibility and stability, suggesting its suitability for therapeutic use. Our in vitro studies demonstrated that the nanosystem precisely targeted and penetrated breast cancer cells, resulting in significant cell death. Additionally, in vivo studies showed that the nanosystem markedly inhibited tumor growth compared to the control group. This tumor-inhibiting effect was due to the combined action of the encapsulated HK, free Met, and the photothermal effect induced by near-infrared laser irradiation. This combination potently stimulates the expression of cleaved caspase-3 and cleaved PARP proteins, ultimately triggering cell apoptosis and effectively curbing tumor proliferation. Our research not only underscores the promising potential of nanoparticles for targeted breast cancer therapy but also sets the stage for further exploration and development of novel nanomedicine-based therapeutic strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
APL Bioengineering
APL Bioengineering ENGINEERING, BIOMEDICAL-
CiteScore
9.30
自引率
6.70%
发文量
39
审稿时长
19 weeks
期刊介绍: APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities. APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes: -Biofabrication and Bioprinting -Biomedical Materials, Sensors, and Imaging -Engineered Living Systems -Cell and Tissue Engineering -Regenerative Medicine -Molecular, Cell, and Tissue Biomechanics -Systems Biology and Computational Biology
期刊最新文献
Enhanced integrated therapy for breast cancer employing Honokiol-loaded mesoporous polydopamine nanoparticles in conjunction with photothermal effects and low-dose metformin. Advances in nanotechnology for targeting cancer-associated fibroblasts: A review of multi-strategy drug delivery and preclinical insights. Injectable photosensitive bone cement enhancing angiogenesis and osteogenic differentiation for the treatment of bone nonunion. Visualization of the hatching of brine shrimp eggs using ultrafast and high-resolution phase-contrast CTs. Hydrodynamic efficient cell capture and pairing method on microfluidic cell electrofusion chip.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1