Effect of miR-200b Liposome Nanoparticles on Chemotherapy Resistance in Rats with Breast Cancer Through Induction of Epidermal Growth Factor Receptor/Extracellular Signal-Regulated Kinase Signal Pathway
{"title":"Effect of miR-200b Liposome Nanoparticles on Chemotherapy Resistance in Rats with Breast Cancer Through Induction of Epidermal Growth Factor Receptor/Extracellular Signal-Regulated Kinase Signal Pathway","authors":"Sirui Li, Conghui Li, Xiaosong Ma, Xuyang Zhang, Liangyu Zhang","doi":"10.1166/jbn.2023.3691","DOIUrl":null,"url":null,"abstract":"This study assessed the effect of miR-200b liposome nanoparticles in restraining chemotherapy resistance in rats with breast cancer through induction of epidermal growth factor receptor enzyme-linked immunosorbent assay enzyme-linked immunosorbent assay (EGFR)/extracellular regulated\n protein kinases (ERK) signal pathway. 50 rats were divided into 4 sets, which included control set, empty carrier set, miR-200b set, and set of miR-200b packaged with liposome nanoparticles. The liposome nanoparticles were prepared and identified, and drug-resistant breast cancer cells were\n observed and identified. The growth inhibition ratio, miR-200b expression, drug-resistance, growth curve, drug resistance of cells, EGFR and ERK protein expressions were observed. miR-200b expression in the et of miR-200b packaged with liposome nanoparticles was highest, second in the miR-200b\n set and empty carrier set, and lowest in the control set. The IC50 value in the miR-200b packaged with liposome nanoparticles was highest. The absorbance in the set of miR-200b liposome nanoparticles was lowest. The immunofluorescence (IF) strength of miR-200b in the miR-200b liposome nanoparticles\n was highest. The EGFR and ERK protein expressions, and levels of pEGFR and p-ERK in the miR-200b liposome nanoparticles set was highest. In conclusion, chemotherapy resistance of breast cancer cells could be restrained by miR-200b liposome nanoparticles through restraining of the EGFR/ERK\n signal pathway.","PeriodicalId":15260,"journal":{"name":"Journal of biomedical nanotechnology","volume":"24 25","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jbn.2023.3691","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
This study assessed the effect of miR-200b liposome nanoparticles in restraining chemotherapy resistance in rats with breast cancer through induction of epidermal growth factor receptor enzyme-linked immunosorbent assay enzyme-linked immunosorbent assay (EGFR)/extracellular regulated
protein kinases (ERK) signal pathway. 50 rats were divided into 4 sets, which included control set, empty carrier set, miR-200b set, and set of miR-200b packaged with liposome nanoparticles. The liposome nanoparticles were prepared and identified, and drug-resistant breast cancer cells were
observed and identified. The growth inhibition ratio, miR-200b expression, drug-resistance, growth curve, drug resistance of cells, EGFR and ERK protein expressions were observed. miR-200b expression in the et of miR-200b packaged with liposome nanoparticles was highest, second in the miR-200b
set and empty carrier set, and lowest in the control set. The IC50 value in the miR-200b packaged with liposome nanoparticles was highest. The absorbance in the set of miR-200b liposome nanoparticles was lowest. The immunofluorescence (IF) strength of miR-200b in the miR-200b liposome nanoparticles
was highest. The EGFR and ERK protein expressions, and levels of pEGFR and p-ERK in the miR-200b liposome nanoparticles set was highest. In conclusion, chemotherapy resistance of breast cancer cells could be restrained by miR-200b liposome nanoparticles through restraining of the EGFR/ERK
signal pathway.