Leonardo Barcellona , Lorenzo Nicolè , Rocco Cappellesso , Angelo Paolo Dei Tos , Stefano Ghidoni
{"title":"SlideTiler: A dataset creator software for boosting deep learning on histological whole slide images","authors":"Leonardo Barcellona , Lorenzo Nicolè , Rocco Cappellesso , Angelo Paolo Dei Tos , Stefano Ghidoni","doi":"10.1016/j.jpi.2023.100356","DOIUrl":null,"url":null,"abstract":"<div><p>The introduction of deep learning caused a significant breakthrough in digital pathology. Thanks to its capability of mining hidden data patterns in digitised histological slides to resolve diagnostic tasks and extract prognostic and predictive information. However, the high performance achieved in classification tasks depends on the availability of large datasets, whose collection and preprocessing are still time-consuming processes. Therefore, strategies to make these steps more efficient are worth investigation. This work introduces SlideTiler, an open-source software with a user-friendly graphical interface. SlideTiler can manage several image preprocessing phases through an intuitive workflow that does not require specific coding skills. The software was designed to provide direct access to virtual slides, allowing custom tiling of specific regions of interest drawn by the user, tile labelling, quality assessment, and direct export to dataset directories. To illustrate the functions and the scalability of SlideTiler, a deep learning-based classifier was implemented to classify 4 different tumour histotypes available in the TCGA repository. The results demonstrate the effectiveness of SlideTiler in facilitating data preprocessing and promoting accessibility to digitised pathology images for research purposes. Considering the increasing interest in deep learning applications of digital pathology, SlideTiler has a positive impact on this field. Moreover, SlideTiler has been conceived as a dynamic tool in constant evolution, and more updated and efficient versions will be released in the future.</p></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"15 ","pages":"Article 100356"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2153353923001700/pdfft?md5=8704f1d3116c95cedb709a6224e1022e&pid=1-s2.0-S2153353923001700-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353923001700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The introduction of deep learning caused a significant breakthrough in digital pathology. Thanks to its capability of mining hidden data patterns in digitised histological slides to resolve diagnostic tasks and extract prognostic and predictive information. However, the high performance achieved in classification tasks depends on the availability of large datasets, whose collection and preprocessing are still time-consuming processes. Therefore, strategies to make these steps more efficient are worth investigation. This work introduces SlideTiler, an open-source software with a user-friendly graphical interface. SlideTiler can manage several image preprocessing phases through an intuitive workflow that does not require specific coding skills. The software was designed to provide direct access to virtual slides, allowing custom tiling of specific regions of interest drawn by the user, tile labelling, quality assessment, and direct export to dataset directories. To illustrate the functions and the scalability of SlideTiler, a deep learning-based classifier was implemented to classify 4 different tumour histotypes available in the TCGA repository. The results demonstrate the effectiveness of SlideTiler in facilitating data preprocessing and promoting accessibility to digitised pathology images for research purposes. Considering the increasing interest in deep learning applications of digital pathology, SlideTiler has a positive impact on this field. Moreover, SlideTiler has been conceived as a dynamic tool in constant evolution, and more updated and efficient versions will be released in the future.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.