Hybrid NOMA for Latency Minimization in Wireless Federated Learning for 6G Networks

IF 0.5 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Radioengineering Pub Date : 2023-12-01 DOI:10.13164/re.2023.0594
P. Kavitha, K. Kavitha
{"title":"Hybrid NOMA for Latency Minimization in Wireless Federated Learning for 6G Networks","authors":"P. Kavitha, K. Kavitha","doi":"10.13164/re.2023.0594","DOIUrl":null,"url":null,"abstract":". Wireless Federated Learning (WFL) is an innovative machine learning paradigm enabling distributed devices to collaboratively learn without sharing raw data. WFL is particularly useful for mobile devices that generate massive amounts of data but have limited resources for training complex models. This paper highlights the significance of reducing delay for efficient WFL implementation through advanced multiple access protocols and joint optimization of communication and computing resources. We propose optimizing the WFL Compute-then-Transmit (CT) protocol using hybrid Non-Orthogonal Multiple Access (H-NOMA). To minimize and optimize latency for the transmission of local training data, we use the Successive Convex Optimization (SCA) method, which efficiently reduces the complexity of non-convex algorithms. Finally, the numerical results verify the effectiveness of H-NOMA in terms of delay reduction, compared to the benchmark that is based on Non-Orthogonal Multiple Acces (NOMA).","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2023.0594","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

. Wireless Federated Learning (WFL) is an innovative machine learning paradigm enabling distributed devices to collaboratively learn without sharing raw data. WFL is particularly useful for mobile devices that generate massive amounts of data but have limited resources for training complex models. This paper highlights the significance of reducing delay for efficient WFL implementation through advanced multiple access protocols and joint optimization of communication and computing resources. We propose optimizing the WFL Compute-then-Transmit (CT) protocol using hybrid Non-Orthogonal Multiple Access (H-NOMA). To minimize and optimize latency for the transmission of local training data, we use the Successive Convex Optimization (SCA) method, which efficiently reduces the complexity of non-convex algorithms. Finally, the numerical results verify the effectiveness of H-NOMA in terms of delay reduction, compared to the benchmark that is based on Non-Orthogonal Multiple Acces (NOMA).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 6G 网络的无线联合学习中实现延迟最小化的混合 NOMA
. 无线联邦学习(WFL)是一种创新的机器学习范式,使分布式设备能够在不共享原始数据的情况下进行协作学习。WFL对于生成大量数据但用于训练复杂模型的资源有限的移动设备特别有用。本文强调了通过先进的多址协议和通信与计算资源的联合优化来降低时延对高效实现WFL的重要性。提出了采用混合非正交多址(H-NOMA)优化WFL计算-传输(CT)协议的方案。为了最小化和优化局部训练数据传输的延迟,我们使用了连续凸优化(SCA)方法,该方法有效地降低了非凸算法的复杂性。最后,数值结果验证了H-NOMA在时延降低方面的有效性,并与基于非正交多址(NOMA)的基准测试进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radioengineering
Radioengineering 工程技术-工程:电子与电气
CiteScore
2.00
自引率
9.10%
发文量
0
审稿时长
5.7 months
期刊介绍: Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields. Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering. The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.
期刊最新文献
Test Evaluation Method for Second-order Intermodulation False Alarm Interference Performance of the User in the TDD NOMA Cellular Networks Enabling FFR An Intelligent Denoising Method for Jamming Pattern Recognition under Noisy Conditions Reconstruction of Mixed Boundary Objects and Classification Using Deep Learning and Linear Sampling Method Coverless Steganography Based on Low Similarity Feature Selection in DCT Domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1