{"title":"Assessment of Exposure to Particulate and Microbiological Contaminants in a Lecture Room","authors":"Łukasz Guz, S. Dumała, Anna Badora, D. Gaweł","doi":"10.12911/22998993/172058","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to determine the amount of particulate and microbial contaminants, i.e. bacteria and fungi found in indoor air in a lecture hall in one of Lublin’s universities and their classification. In the research part, the amount of particulate and microbial pollutants was measured. Bioaerosols were investigated using an Andersen cascade impactor, which was located in the central part of the room at a height of 1–1.5 m, and single-level impac - tors. Identification of the microorganisms present in indoor air was carried out. The air in the room was sampled before the start of class to determine the “background,” i.e. the concentration level of microbial contaminants in the classroom without the presence of students. Subsequent measurements were taken during teaching activities in the presence of students and the teacher. The study shows that the air condition in the classroom during its opera - tion met the requirements in terms of PM2.5, PM10 and microorganisms. The highest risk was recorded for carbon dioxide. Moreover, the highest recorded readings of this pollutant coincided with the maximum concentrations of the other monitored quantities. Therefore, it can be unequivocally stated that in the case of the analyzed room, monitoring carbon dioxide and adjusting the size of the ventilation airflow to maintain its concentration within the limit of 1000 ppm would guarantee the maintenance of adequate indoor air quality. The study showed no correla - tion between CO 2 concentration and measured concentrations of microbial contaminants.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":"41 10","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/172058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study was to determine the amount of particulate and microbial contaminants, i.e. bacteria and fungi found in indoor air in a lecture hall in one of Lublin’s universities and their classification. In the research part, the amount of particulate and microbial pollutants was measured. Bioaerosols were investigated using an Andersen cascade impactor, which was located in the central part of the room at a height of 1–1.5 m, and single-level impac - tors. Identification of the microorganisms present in indoor air was carried out. The air in the room was sampled before the start of class to determine the “background,” i.e. the concentration level of microbial contaminants in the classroom without the presence of students. Subsequent measurements were taken during teaching activities in the presence of students and the teacher. The study shows that the air condition in the classroom during its opera - tion met the requirements in terms of PM2.5, PM10 and microorganisms. The highest risk was recorded for carbon dioxide. Moreover, the highest recorded readings of this pollutant coincided with the maximum concentrations of the other monitored quantities. Therefore, it can be unequivocally stated that in the case of the analyzed room, monitoring carbon dioxide and adjusting the size of the ventilation airflow to maintain its concentration within the limit of 1000 ppm would guarantee the maintenance of adequate indoor air quality. The study showed no correla - tion between CO 2 concentration and measured concentrations of microbial contaminants.
期刊介绍:
- Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment