The energy-stepping Monte Carlo method: an exactly symmetry-preserving, a Hamiltonian Monte Carlo method with a 100% acceptance ratio

Ignacio Romero, Michael Ortiz
{"title":"The energy-stepping Monte Carlo method: an exactly symmetry-preserving, a Hamiltonian Monte Carlo method with a 100% acceptance ratio","authors":"Ignacio Romero, Michael Ortiz","doi":"arxiv-2312.07215","DOIUrl":null,"url":null,"abstract":"We introduce the energy-stepping Monte Carlo (ESMC) method, a Markov chain\nMonte Carlo (MCMC) algorithm based on the conventional dynamical interpretation\nof the proposal stage but employing an energy-stepping integrator. The\nenergy-stepping integrator is quasi-explicit, symplectic, energy-conserving,\nand symmetry-preserving. As a result of the exact energy conservation of\nenergy-stepping integrators, ESMC has a 100\\%\\ acceptance ratio of the proposal\nstates. Numerical tests provide empirical evidence that ESMC affords a number\nof additional benefits: the Markov chains it generates have weak\nautocorrelation, it has the ability to explore distant characteristic sets of\nthe sampled probability distribution and it yields smaller errors than chains\nsampled with Hamiltonian Monte Carlo (HMC) and similar step sizes. Finally,\nESMC benefits from the exact symmetry conservation properties of the\nenergy-stepping integrator when sampling from potentials with built-in\nsymmetries, whether explicitly known or not.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.07215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the energy-stepping Monte Carlo (ESMC) method, a Markov chain Monte Carlo (MCMC) algorithm based on the conventional dynamical interpretation of the proposal stage but employing an energy-stepping integrator. The energy-stepping integrator is quasi-explicit, symplectic, energy-conserving, and symmetry-preserving. As a result of the exact energy conservation of energy-stepping integrators, ESMC has a 100\%\ acceptance ratio of the proposal states. Numerical tests provide empirical evidence that ESMC affords a number of additional benefits: the Markov chains it generates have weak autocorrelation, it has the ability to explore distant characteristic sets of the sampled probability distribution and it yields smaller errors than chains sampled with Hamiltonian Monte Carlo (HMC) and similar step sizes. Finally, ESMC benefits from the exact symmetry conservation properties of the energy-stepping integrator when sampling from potentials with built-in symmetries, whether explicitly known or not.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
能量步蒙特卡罗方法:一种完全保密的、接受率为 100%的哈密尔顿蒙特卡罗方法
我们介绍了能量步进蒙特卡罗(ESMC)方法,这是一种基于提议阶段的传统动态解释但采用能量步进积分器的马尔可夫链蒙特卡罗(MCMC)算法。能量步进积分器是准显式的、辛的、守恒的和对称的。由于能量步进积分器的精确节能,ESMC对提案状态的接受率为100%。数值测试提供了经验证据,表明ESMC提供了许多额外的好处:它生成的马尔可夫链具有弱自相关性,它具有探索采样概率分布的远距离特征集的能力,并且它产生的误差比用哈密顿蒙特卡罗(HMC)和类似步长采样的链更小。最后,ESMC受益于能量步进积分器的精确对称守恒特性,当从具有内置不对称性的势中采样时,无论是否明确已知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double bracket vector fields on Poisson manifolds Why is the universe not frozen by the quantum Zeno effect? A uniqueness theory on determining the nonlinear energy potential in phase-field system Flows in the Space of Interacting Chiral Boson Theories Logarithmic singularity in the density four-point function of two-dimensional critical percolation in the bulk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1