The effect of data sources on calculating mean temperature and integrated water vapor in Iran

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Meteorological Applications Pub Date : 2023-12-13 DOI:10.1002/met.2167
Hassan Rahimi, Jamal Asgari, Vahab Nafisi
{"title":"The effect of data sources on calculating mean temperature and integrated water vapor in Iran","authors":"Hassan Rahimi,&nbsp;Jamal Asgari,&nbsp;Vahab Nafisi","doi":"10.1002/met.2167","DOIUrl":null,"url":null,"abstract":"<p>The weighted mean temperature (<math>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>m</mi>\n </msub>\n </mrow></math>) plays a crucial role in calculating Precipitable Water Vapor (PWV) and integrated water vapor (IWV) using Global Navigation Satellite Systems (GNSS) techniques. Currently, the primary sources for meteorological parameters are radiosonde measurements and Numerical Weather Models (NWMs). This study focuses on assessing the influence of different data sources on the computation of <math>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>m</mi>\n </msub>\n </mrow></math> and IWV in Iran. The investigation involved comparing several datasets: ERA5 numerical data with spatial resolutions of 0.125° and 2.5° (ERA5 0.125, ERA5 2.5), ERA-Interim, NCEP numerical data and <math>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>m</mi>\n </msub>\n </mrow></math> results derived from the GPT3 model. Validation of the results utilized data from 12 radiosonde stations situated across Iran. In addition, the precision of the IWV parameter was evaluated by utilizing measurements from the only available IGS station in the region, situated in Tehran. The results revealed that ERA5 0.125 exhibited superior accuracy in <math>\n <mrow>\n <msub>\n <mi>T</mi>\n <mi>m</mi>\n </msub>\n </mrow></math> estimation compared with the other datasets, showing a discrepancy of approximately 1–2 K. In contrast, the GPT3 model displayed an accuracy of about 3 K. Analysing the results across different months of the year revealed elevated root mean square error (RMSE) values during warmer months, with little variability based on station height in the region for the four datasets. Regarding IWV, the ERA5 0.125 dataset outperformed the other three datasets, demonstrating an accuracy of about 0.07 kg m<sup>−2</sup>. Notably, RMSE values during summer were approximately 50% higher compared with the annual RMSE.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"30 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/met.2167","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.2167","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The weighted mean temperature ( T m ) plays a crucial role in calculating Precipitable Water Vapor (PWV) and integrated water vapor (IWV) using Global Navigation Satellite Systems (GNSS) techniques. Currently, the primary sources for meteorological parameters are radiosonde measurements and Numerical Weather Models (NWMs). This study focuses on assessing the influence of different data sources on the computation of T m and IWV in Iran. The investigation involved comparing several datasets: ERA5 numerical data with spatial resolutions of 0.125° and 2.5° (ERA5 0.125, ERA5 2.5), ERA-Interim, NCEP numerical data and T m results derived from the GPT3 model. Validation of the results utilized data from 12 radiosonde stations situated across Iran. In addition, the precision of the IWV parameter was evaluated by utilizing measurements from the only available IGS station in the region, situated in Tehran. The results revealed that ERA5 0.125 exhibited superior accuracy in T m estimation compared with the other datasets, showing a discrepancy of approximately 1–2 K. In contrast, the GPT3 model displayed an accuracy of about 3 K. Analysing the results across different months of the year revealed elevated root mean square error (RMSE) values during warmer months, with little variability based on station height in the region for the four datasets. Regarding IWV, the ERA5 0.125 dataset outperformed the other three datasets, demonstrating an accuracy of about 0.07 kg m−2. Notably, RMSE values during summer were approximately 50% higher compared with the annual RMSE.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据源对计算伊朗平均气温和综合水汽的影响
加权平均温度(Tm)在全球导航卫星系统(GNSS)计算可降水量(PWV)和综合水汽(IWV)中起着至关重要的作用。目前,气象参数的主要来源是探空测量和数值天气模式(NWMs)。本研究侧重于评估不同数据源对伊朗Tm和IWV计算的影响。研究比较了空间分辨率为0.125°和2.5°的ERA5数值数据(ERA5 0.125, ERA5 2.5)、ERA-Interim、NCEP数值数据和GPT3模型的Tm结果。结果的验证利用了位于伊朗各地的12个无线电探空站的数据。此外,利用位于德黑兰的该地区唯一可用的IGS站的测量结果,对IWV参数的精度进行了评估。结果表明,与其他数据集相比,ERA5 0.125在Tm估计中表现出更高的精度,差异约为1-2 K。相比之下,GPT3模型显示的精度约为3k。分析一年中不同月份的结果显示,在温暖的月份,均方根误差(RMSE)值升高,四个数据集在该地区基于站高的变化很小。在IWV方面,ERA5 0.125数据集优于其他三个数据集,其精度约为0.07 kg m−2。值得注意的是,夏季的RMSE值比全年RMSE高约50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Meteorological Applications
Meteorological Applications 地学-气象与大气科学
CiteScore
5.70
自引率
3.70%
发文量
62
审稿时长
>12 weeks
期刊介绍: The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including: applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits; forecasting, warning and service delivery techniques and methods; weather hazards, their analysis and prediction; performance, verification and value of numerical models and forecasting services; practical applications of ocean and climate models; education and training.
期刊最新文献
Incorporating zero-plane displacement in roughness length estimation and exposure correction factor calculation Spatial–temporal variation of daily precipitation in different levels over mainland China during 1960–2019 A novel early-warning standardized indicator for drought preparedness and management under multiple climate model projections Issue Information Estimating latent heat flux of subtropical forests using machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1