{"title":"Kinetics and Mechanism of Methylene Blue Adsorption by a TiO2/Diatomite Nanocomposite and Its Components","authors":"T. Ya. Datsko, V. I. Zelentsov","doi":"10.3103/S1068375523060078","DOIUrl":null,"url":null,"abstract":"<p>A study was made of the kinetics of the adsorption of the methylene blue dye from an aqueous solution on the photocatalyst DDT (nanosized titanium dioxide in the anatase phase, deposited on diatomite) and its components: diatomite D and anatase TiO<sub>2</sub>. The effect of the initial concentration and pH of the methylene blue solution on the rate of the adsorption process was investigated. The kinetic data of adsorption were processed using two simplified kinetic models, one of the pseudo-first-order and the other of pseudo-second-order. To investigate the adsorption mechanism, a model of intraparticle diffusion kinetics was employed. The adsorption kinetics of methylene blue on the surfaces of D, TiO<sub>2</sub>, and DDT was found to be best described by the pseudo-second-order model. It was shown that the adsorption of methylene blue on the D and DDT adsorbents is a multistep process involving adsorption on the external surface and inside particles, with the limiting step being a chemical reaction. For the adsorption on TiO<sub>2</sub>, the limiting step is the external diffusion.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 6","pages":"772 - 779"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375523060078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
A study was made of the kinetics of the adsorption of the methylene blue dye from an aqueous solution on the photocatalyst DDT (nanosized titanium dioxide in the anatase phase, deposited on diatomite) and its components: diatomite D and anatase TiO2. The effect of the initial concentration and pH of the methylene blue solution on the rate of the adsorption process was investigated. The kinetic data of adsorption were processed using two simplified kinetic models, one of the pseudo-first-order and the other of pseudo-second-order. To investigate the adsorption mechanism, a model of intraparticle diffusion kinetics was employed. The adsorption kinetics of methylene blue on the surfaces of D, TiO2, and DDT was found to be best described by the pseudo-second-order model. It was shown that the adsorption of methylene blue on the D and DDT adsorbents is a multistep process involving adsorption on the external surface and inside particles, with the limiting step being a chemical reaction. For the adsorption on TiO2, the limiting step is the external diffusion.
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.