Classification of fetal and adult red blood cells based on hydrodynamic deformation and deep video recognition

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Biomedical Microdevices Pub Date : 2023-12-14 DOI:10.1007/s10544-023-00688-6
Peter Johannes Tejlgaard Kampen, Gustav Ragnar Støttrup-Als, Nicklas Bruun-Andersen, Joachim Secher, Freja Høier, Anne Todsen Hansen, Morten Hanefeld Dziegiel, Anders Nymark Christensen, Kirstine Berg-Sørensen
{"title":"Classification of fetal and adult red blood cells based on hydrodynamic deformation and deep video recognition","authors":"Peter Johannes Tejlgaard Kampen,&nbsp;Gustav Ragnar Støttrup-Als,&nbsp;Nicklas Bruun-Andersen,&nbsp;Joachim Secher,&nbsp;Freja Høier,&nbsp;Anne Todsen Hansen,&nbsp;Morten Hanefeld Dziegiel,&nbsp;Anders Nymark Christensen,&nbsp;Kirstine Berg-Sørensen","doi":"10.1007/s10544-023-00688-6","DOIUrl":null,"url":null,"abstract":"<div><p>Flow based deformation cytometry has shown potential for cell classification. We demonstrate the principle with an injection moulded microfluidic chip from which we capture videos of adult and fetal red blood cells, as they are being deformed in a microfluidic chip. Using a deep neural network - SlowFast - that takes the temporal behavior into account, we are able to discriminate between the cells with high accuracy. The accuracy was larger for adult blood cells than for fetal blood cells. However, no significant difference was observed between donors of the two types.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-023-00688-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00688-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Flow based deformation cytometry has shown potential for cell classification. We demonstrate the principle with an injection moulded microfluidic chip from which we capture videos of adult and fetal red blood cells, as they are being deformed in a microfluidic chip. Using a deep neural network - SlowFast - that takes the temporal behavior into account, we are able to discriminate between the cells with high accuracy. The accuracy was larger for adult blood cells than for fetal blood cells. However, no significant difference was observed between donors of the two types.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于流体力学变形和深度视频识别的胎儿和成人红细胞分类
基于流动的变形细胞术显示出细胞分类的潜力。我们用注射成型的微流控芯片演示了这一原理,从中我们捕获成人和胎儿红细胞的视频,因为它们在微流控芯片中变形。使用深层神经网络- SlowFast -考虑到时间行为,我们能够以高精度区分细胞。成人血细胞的准确度高于胎儿血细胞。然而,在两种类型的供者之间没有观察到显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
期刊最新文献
Research and development of microenvironment's influence on stem cells from the apical papilla - construction of novel research microdevices: tooth-on-a-chip. A dynamic flow fetal membrane organ-on-a-chip system for modeling the effects of amniotic fluid motion. Biocompatible Janus microparticle synthesis in a microfluidic device. Flexible electronics for heavy metal ion detection in water: a comprehensive review. 3D bioprinted mesenchymal stem cell laden scaffold enhances subcutaneous vascularization for delivery of cell therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1