{"title":"Double-Edged Defense: Thwarting Cyber Attacks and Adversarial Machine Learning in IEC 60870-5-104 Smart Grids","authors":"Hadir Teryak;Abdullatif Albaseer;Mohamed Abdallah;Saif Al-Kuwari;Marwa Qaraqe","doi":"10.1109/OJIES.2023.3336234","DOIUrl":null,"url":null,"abstract":"Smart grids (SGs), a cornerstone of modern power systems, facilitate efficient management and distribution of electricity. Despite their advantages, increased connectivity and reliance on communication networks expand their susceptibility to cyber threats. Machine learning (ML) can radically transform cyber security in SGs and secure protocols as in IEC 60870 standard, an international standard for electric power system communication. Notwithstanding, cyber adversaries are now exploiting ML-based intrusion detection systems (IDS) using adversarial ML attacks, potentially undermining SG security. This article addresses cyber attacks on the communication network of SGs, specifically targeting the IEC 60870-5-104 protocol. We introduce a novel ML-based IDS framework for the IEC 60870-5-104 protocol. Specifically, we employ an artificial neural network (ANN) to analyze a new and realistically representative dataset of IEC 60870-5-104 traffic data, unlike previous research that relies on simulated or unrelated data. This approach assists in identifying anomalies indicative of cyber attacks more accurately. Furthermore, we evaluate the resilience of our ANN model against adversarial attacks, including the fast gradient sign method, projected gradient descent, and Carlini and Wagner attacks. Our results demonstrate that the proposed framework can accurately detect cyber attacks and remains robust to adversarial attacks. This offers efficient and resilient IDS capabilities to detect and mitigate cyber attacks in real-world ML-based adversarial environments.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"4 ","pages":"629-642"},"PeriodicalIF":5.2000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10328057","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10328057/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Smart grids (SGs), a cornerstone of modern power systems, facilitate efficient management and distribution of electricity. Despite their advantages, increased connectivity and reliance on communication networks expand their susceptibility to cyber threats. Machine learning (ML) can radically transform cyber security in SGs and secure protocols as in IEC 60870 standard, an international standard for electric power system communication. Notwithstanding, cyber adversaries are now exploiting ML-based intrusion detection systems (IDS) using adversarial ML attacks, potentially undermining SG security. This article addresses cyber attacks on the communication network of SGs, specifically targeting the IEC 60870-5-104 protocol. We introduce a novel ML-based IDS framework for the IEC 60870-5-104 protocol. Specifically, we employ an artificial neural network (ANN) to analyze a new and realistically representative dataset of IEC 60870-5-104 traffic data, unlike previous research that relies on simulated or unrelated data. This approach assists in identifying anomalies indicative of cyber attacks more accurately. Furthermore, we evaluate the resilience of our ANN model against adversarial attacks, including the fast gradient sign method, projected gradient descent, and Carlini and Wagner attacks. Our results demonstrate that the proposed framework can accurately detect cyber attacks and remains robust to adversarial attacks. This offers efficient and resilient IDS capabilities to detect and mitigate cyber attacks in real-world ML-based adversarial environments.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.