2D Materials for Combination Therapy to Address Challenges in the Treatment of Cancer

IF 4 Q2 ENGINEERING, BIOMEDICAL Advanced Nanobiomed Research Pub Date : 2023-11-28 DOI:10.1002/anbr.202300070
Ava Self, Megan Farell, Laximicharan Samineni, Manish Kumar, Esther W. Gomez
{"title":"2D Materials for Combination Therapy to Address Challenges in the Treatment of Cancer","authors":"Ava Self,&nbsp;Megan Farell,&nbsp;Laximicharan Samineni,&nbsp;Manish Kumar,&nbsp;Esther W. Gomez","doi":"10.1002/anbr.202300070","DOIUrl":null,"url":null,"abstract":"<p>2D materials exhibit a variety of characteristics that make them appealing platforms for cancer treatment such as high drug loading capacity and photothermal and photodynamic properties. A key advantage of 2D material platforms for oncological applications is the ability to harness multiple modalities including drug delivery, photothermal therapy, photodynamic therapy, chemodynamic therapy, gene delivery, and immunotherapy approaches for improved efficacy. In this review, a comparison of the unique properties of different classes of 2D materials that enable their usage as platforms for multimodal therapy is provided. Further, the benefits and drawbacks of different platforms are also highlighted. Finally, current challenges and emerging opportunities for future development of 2D materials to further enable combination therapy and translation from the bench to clinical oncology applications are discussed.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"3 12","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300070","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

2D materials exhibit a variety of characteristics that make them appealing platforms for cancer treatment such as high drug loading capacity and photothermal and photodynamic properties. A key advantage of 2D material platforms for oncological applications is the ability to harness multiple modalities including drug delivery, photothermal therapy, photodynamic therapy, chemodynamic therapy, gene delivery, and immunotherapy approaches for improved efficacy. In this review, a comparison of the unique properties of different classes of 2D materials that enable their usage as platforms for multimodal therapy is provided. Further, the benefits and drawbacks of different platforms are also highlighted. Finally, current challenges and emerging opportunities for future development of 2D materials to further enable combination therapy and translation from the bench to clinical oncology applications are discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于联合疗法的二维材料应对癌症治疗中的挑战
二维材料表现出各种特性,使其成为癌症治疗的吸引平台,如高药物负载能力和光热和光动力特性。用于肿瘤应用的二维材料平台的一个关键优势是能够利用多种模式,包括药物输送、光热疗法、光动力疗法、化学动力疗法、基因输送和免疫疗法,以提高疗效。在这篇综述中,比较了不同类别的二维材料的独特特性,使其能够作为多模式治疗的平台。此外,还强调了不同平台的优点和缺点。最后,讨论了当前的挑战和未来二维材料发展的新机遇,以进一步实现从实验室到临床肿瘤学应用的联合治疗和转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
期刊最新文献
Masthead Microfluidic Encapsulation of DNAs in Liquid Beads for Digital Loop-Mediated Isothermal Amplification Masthead Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor Nanoarchitectonics for Biomedical Research: Post-Nanotechnology Materials Approach for Bio-Active Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1