The High Potential of ε-Poly-l-Lysine for the Development of Antimicrobial Biomaterials

IF 4 Q2 ENGINEERING, BIOMEDICAL Advanced Nanobiomed Research Pub Date : 2023-11-27 DOI:10.1002/anbr.202300080
Eloïse Lebaudy, Chloé Guilbaud-Chéreau, Benoit Frisch, Nihal Engin Vrana, Philippe Lavalle
{"title":"The High Potential of ε-Poly-l-Lysine for the Development of Antimicrobial Biomaterials","authors":"Eloïse Lebaudy,&nbsp;Chloé Guilbaud-Chéreau,&nbsp;Benoit Frisch,&nbsp;Nihal Engin Vrana,&nbsp;Philippe Lavalle","doi":"10.1002/anbr.202300080","DOIUrl":null,"url":null,"abstract":"<p>ε-poly-<span>l</span>-lysine (ε-PLL) is a natural polypeptide/polycation originating from bacteria. Thanks to its antifungal and antibacterial properties, it is the subject of extensive research in the food and medical industries. ε-PLL is also used to develop biomaterials in a broad range of applications, such as drug delivery, wound healing, or antimicrobial coatings. Indeed, loading ε-PLL inside nanoparticles, functionalizing implant surfaces with ε-PLL, or developing hydrogels based on reactions between ε-PLL and other polymers can improve the materials properties, leading to biocompatible, antibacterial, and antifungal systems. These characteristics are necessary not only for the development of biomaterials, for their integrity in a biological environment, but also for improving the performances of medical devices. Moreover, ε-PLL can be used as an alternative to antibiotics as its mechanism of action reduces the bacterial resistance risk compared with antibiotics. Finally, “smart” systems using ε-PLL may be developed, with controllable material degradation or drug delivery via pH or temperature variations. This review sought to gather the latest research on the development of antimicrobial biomaterials based on the ε-PLL polypeptide.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"3 12","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300080","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

ε-poly-l-lysine (ε-PLL) is a natural polypeptide/polycation originating from bacteria. Thanks to its antifungal and antibacterial properties, it is the subject of extensive research in the food and medical industries. ε-PLL is also used to develop biomaterials in a broad range of applications, such as drug delivery, wound healing, or antimicrobial coatings. Indeed, loading ε-PLL inside nanoparticles, functionalizing implant surfaces with ε-PLL, or developing hydrogels based on reactions between ε-PLL and other polymers can improve the materials properties, leading to biocompatible, antibacterial, and antifungal systems. These characteristics are necessary not only for the development of biomaterials, for their integrity in a biological environment, but also for improving the performances of medical devices. Moreover, ε-PLL can be used as an alternative to antibiotics as its mechanism of action reduces the bacterial resistance risk compared with antibiotics. Finally, “smart” systems using ε-PLL may be developed, with controllable material degradation or drug delivery via pH or temperature variations. This review sought to gather the latest research on the development of antimicrobial biomaterials based on the ε-PLL polypeptide.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ε-聚赖氨酸在开发抗菌生物材料方面的巨大潜力
ε-聚赖氨酸(ε-PLL)是一种源自细菌的天然多肽/多阳离子。由于其抗真菌和抗菌的特性,它是食品和医疗行业广泛研究的主题。ε-PLL还用于开发广泛应用的生物材料,如药物输送,伤口愈合或抗菌涂层。事实上,在纳米颗粒中加载ε-PLL,用ε-PLL功能化植入体表面,或者基于ε-PLL与其他聚合物之间的反应开发水凝胶,都可以提高材料的性能,从而形成生物相容性、抗菌和抗真菌的体系。这些特性不仅对生物材料的发展,对其在生物环境中的完整性,而且对改善医疗设备的性能都是必要的。此外,与抗生素相比,ε-PLL的作用机制降低了细菌的耐药风险,可以作为抗生素的替代品。最后,使用ε-PLL的“智能”系统可能会被开发出来,通过pH或温度变化控制材料降解或药物递送。本文综述了基于ε-PLL多肽的抗菌生物材料的最新研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
期刊最新文献
Masthead Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor Cover Picture Masthead Advances in Additive Manufactured Scaffolds Mimicking the Osteochondral Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1