Secret key rate bounds for quantum key distribution with faulty active phase randomization

IF 5.8 2区 物理与天体物理 Q1 OPTICS EPJ Quantum Technology Pub Date : 2023-12-15 DOI:10.1140/epjqt/s40507-023-00210-0
Xoel Sixto, Guillermo Currás-Lorenzo, Kiyoshi Tamaki, Marcos Curty
{"title":"Secret key rate bounds for quantum key distribution with faulty active phase randomization","authors":"Xoel Sixto,&nbsp;Guillermo Currás-Lorenzo,&nbsp;Kiyoshi Tamaki,&nbsp;Marcos Curty","doi":"10.1140/epjqt/s40507-023-00210-0","DOIUrl":null,"url":null,"abstract":"<div><p>Decoy-state quantum key distribution (QKD) is undoubtedly the most efficient solution to handle multi-photon signals emitted by laser sources, and provides the same secret key rate scaling as ideal single-photon sources. It requires, however, that the phase of each emitted pulse is uniformly random. This might be difficult to guarantee in practice, due to inevitable device imperfections and/or the use of an external phase modulator for phase randomization in an active setup, which limits the possible selected phases to a finite set. Here, we investigate the security of decoy-state QKD when the phase is actively randomized by faulty devices, and show that this technique is quite robust to deviations from the ideal uniformly random scenario. For this, we combine a novel parameter estimation technique based on semi-definite programming, with the use of basis mismatched events, to tightly estimate the parameters that determine the achievable secret key rate. In doing so, we demonstrate that our analysis can significantly outperform previous results that address more restricted scenarios.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00210-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00210-0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Decoy-state quantum key distribution (QKD) is undoubtedly the most efficient solution to handle multi-photon signals emitted by laser sources, and provides the same secret key rate scaling as ideal single-photon sources. It requires, however, that the phase of each emitted pulse is uniformly random. This might be difficult to guarantee in practice, due to inevitable device imperfections and/or the use of an external phase modulator for phase randomization in an active setup, which limits the possible selected phases to a finite set. Here, we investigate the security of decoy-state QKD when the phase is actively randomized by faulty devices, and show that this technique is quite robust to deviations from the ideal uniformly random scenario. For this, we combine a novel parameter estimation technique based on semi-definite programming, with the use of basis mismatched events, to tightly estimate the parameters that determine the achievable secret key rate. In doing so, we demonstrate that our analysis can significantly outperform previous results that address more restricted scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带故障主动相随机化的量子密钥分发的密钥速率边界
诱饵态量子密钥分配(QKD)无疑是处理激光源发射的多光子信号最有效的解决方案,它提供了与理想的单光子源相同的密钥速率缩放。然而,它要求每个发射脉冲的相位是均匀随机的。由于不可避免的设备缺陷和/或在有源设置中使用外部相位调制器进行相位随机化,这将可能选择的相位限制在有限集合中,因此在实践中可能难以保证。在这里,我们研究了当相位被故障设备主动随机化时诱饵态QKD的安全性,并表明该技术对于偏离理想的均匀随机场景具有相当的鲁棒性。为此,我们将一种基于半确定规划的参数估计技术与基不匹配事件相结合,严密地估计了决定可实现密钥率的参数。在这样做的过程中,我们证明了我们的分析可以显著优于先前处理更有限场景的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
期刊最新文献
On validity of quantum partial adiabatic search Quantum multi-state Swap Test: an algorithm for estimating overlaps of arbitrary number quantum states Synergy between noisy quantum computers and scalable classical deep learning for quantum error mitigation A meta-trained generator for quantum architecture search Efficient realization of quantum algorithms with qudits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1