首页 > 最新文献

EPJ Quantum Technology最新文献

英文 中文
Numerical model of N-level cascade systems for atomic Radio Frequency sensing applications 用于原子射频传感应用的 N 级级联系统数值模型
IF 5.8 2区 物理与天体物理 Q1 OPTICS Pub Date : 2024-11-18 DOI: 10.1140/epjqt/s40507-024-00291-5
Liam W. Bussey, Yogeshwar B. Kale, Samuel Winter, Fraser A. Burton, Yu-Hung Lien, Kai Bongs, Costas Constantinou

A ready-to-use numerical model has been developed for the atomic ladder (cascade) systems which are widely exploited in Rydberg Radio Frequency (RF) sensors. The model has been explicitly designed for user convenience and to be extensible to arbitrary N-level non-thermal systems. The versatility and adaptability of the model is validated up to 4-level atomic systems by direct comparison with experimental results from the prior art. The numerical model provides a good approximation to the experimental results and provides experimentalists with a convenient ready-to-use model to optimise the operation of an N-level Rydberg RF sensor. Current sensors exploit the 4-level atomic systems based on alkali metal atoms which require visible frequency lasers and these can be expensive and also suffer from high attenuation within optical fiber. The ability to quickly and simply explore more complex N-level systems offers the potential to use cheaper and lower-loss near-infrared lasers.

针对雷德贝格射频(RF)传感器中广泛使用的原子阶梯(级联)系统,我们开发了一种即用型数值模型。该模型设计明确,方便用户使用,并可扩展到任意 N 级非热系统。通过与现有技术的实验结果进行直接比较,该模型的多功能性和适应性得到了验证,最高可达 4 级原子系统。该数值模型提供了与实验结果的良好近似,并为实验人员提供了方便的即用模型,以优化 N 级雷德堡射频传感器的运行。目前的传感器利用基于碱金属原子的 4 级原子系统,这种系统需要可见光频率的激光器,而这些激光器价格昂贵,在光纤中还会出现高衰减。能够快速、简单地探索更复杂的 N 级系统,为使用更便宜、损耗更低的近红外激光器提供了可能。
{"title":"Numerical model of N-level cascade systems for atomic Radio Frequency sensing applications","authors":"Liam W. Bussey,&nbsp;Yogeshwar B. Kale,&nbsp;Samuel Winter,&nbsp;Fraser A. Burton,&nbsp;Yu-Hung Lien,&nbsp;Kai Bongs,&nbsp;Costas Constantinou","doi":"10.1140/epjqt/s40507-024-00291-5","DOIUrl":"10.1140/epjqt/s40507-024-00291-5","url":null,"abstract":"<div><p>A ready-to-use numerical model has been developed for the atomic ladder (cascade) systems which are widely exploited in Rydberg Radio Frequency (RF) sensors. The model has been explicitly designed for user convenience and to be extensible to arbitrary N-level non-thermal systems. The versatility and adaptability of the model is validated up to 4-level atomic systems by direct comparison with experimental results from the prior art. The numerical model provides a good approximation to the experimental results and provides experimentalists with a convenient ready-to-use model to optimise the operation of an N-level Rydberg RF sensor. Current sensors exploit the 4-level atomic systems based on alkali metal atoms which require visible frequency lasers and these can be expensive and also suffer from high attenuation within optical fiber. The ability to quickly and simply explore more complex N-level systems offers the potential to use cheaper and lower-loss near-infrared lasers.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00291-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of high impedance resonators in dirty dielectric environments 高阻抗谐振器在肮脏介质环境中的性能。
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2023-10-06 DOI: 10.1140/epjqt/s40507-023-00199-6
J. H. Ungerer, D. Sarmah, A. Kononov, J. Ridderbos, R. Haller, L. Y. Cheung, C. Schönenberger

High-impedance resonators are a promising contender for realizing long-distance entangling gates between spin qubits. Often, the fabrication of spin qubits relies on the use of gate dielectrics which are detrimental to the quality of the resonator. Here, we investigate loss mechanisms of high-impedance NbTiN resonators in the vicinity of thermally grown SiO2 and Al2O3 fabricated by atomic layer deposition. We benchmark the resonator performance in elevated magnetic fields and at elevated temperatures and find that the internal quality factors are limited by the coupling between the resonator and two-level systems of the employed oxides. Nonetheless, the internal quality factors of high-impedance resonators exceed 103 in all investigated oxide configurations which implies that the dielectric configuration would not limit the performance of resonators integrated in a spin-qubit device. Because these oxides are commonly used for spin qubit device fabrication, our results allow for straightforward integration of high-impedance resonators into spin-based quantum processors. Hence, these experiments pave the way for large-scale, spin-based quantum computers.

高阻抗谐振器是实现自旋量子位之间长距离纠缠门的有力竞争者。通常,自旋量子位的制造依赖于栅极电介质的使用,这对谐振器的质量有害。在这里,我们研究了通过原子层沉积制备的热生长SiO2和Al2O3附近的高阻抗NbTiN谐振器的损耗机制。我们对谐振器在升高磁场和升高温度下的性能进行了基准测试,发现内部质量因子受到谐振器和所用氧化物的二能级系统之间的耦合的限制。尽管如此,在所有研究的氧化物配置中,高阻抗谐振器的内部质量因子都超过103,这意味着电介质配置不会限制集成在自旋量子位器件中的谐振器的性能。由于这些氧化物通常用于自旋量子位器件的制造,我们的研究结果允许将高阻抗谐振器直接集成到基于自旋的量子处理器中。因此,这些实验为大规模的、基于自旋的量子计算机铺平了道路。
{"title":"Performance of high impedance resonators in dirty dielectric environments","authors":"J. H. Ungerer,&nbsp;D. Sarmah,&nbsp;A. Kononov,&nbsp;J. Ridderbos,&nbsp;R. Haller,&nbsp;L. Y. Cheung,&nbsp;C. Schönenberger","doi":"10.1140/epjqt/s40507-023-00199-6","DOIUrl":"10.1140/epjqt/s40507-023-00199-6","url":null,"abstract":"<div><p>High-impedance resonators are a promising contender for realizing long-distance entangling gates between spin qubits. Often, the fabrication of spin qubits relies on the use of gate dielectrics which are detrimental to the quality of the resonator. Here, we investigate loss mechanisms of high-impedance NbTiN resonators in the vicinity of thermally grown SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> fabricated by atomic layer deposition. We benchmark the resonator performance in elevated magnetic fields and at elevated temperatures and find that the internal quality factors are limited by the coupling between the resonator and two-level systems of the employed oxides. Nonetheless, the internal quality factors of high-impedance resonators exceed 10<sup>3</sup> in all investigated oxide configurations which implies that the dielectric configuration would not limit the performance of resonators integrated in a spin-qubit device. Because these oxides are commonly used for spin qubit device fabrication, our results allow for straightforward integration of high-impedance resonators into spin-based quantum processors. Hence, these experiments pave the way for large-scale, spin-based quantum computers.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558395/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41104414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Arbitrary bias control of LiNbO3 based Mach-Zehnder intensity modulators for QKD system QKD系统中基于LiNbO3的马赫-曾德尔强度调制器的任意偏置控制
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2023-09-07 DOI: 10.1140/epjqt/s40507-023-00189-8
Jun Teng, Shuang Wang, Zhen-Qiang Yin, Wei Chen, Guan-Jie Fan-Yuan, Guang-Can Guo, Zheng-Fu Han

Quantum key distribution (QKD) can help distant agents to share unconditional secret keys, and the achievable secret key rate can be enhanced with the help of decoy-state protocol. To implement QKD experimentally, the agents are supposed to accurately transmit a number of different intensity pulses with the LiNbO3 based Mach-Zehnder (LNMZ) intensity modulator. However, the bias drift of LNMZ intensity modulator may affect the performance of a QKD system. In this letter, we reveal a simple RC circuit model to demonstrate the bias drift in the LNMZ intensity modulator. And based on the model, we propose a multi-step bias stable scheme to control the bias working point. Experimental result shows that our scheme can eliminate the bias drift of at arbitrary working point within a long time range. Besides, there is no need of any feedback mechanisms in the scheme. This means our scheme will not lead to any increasement in system complexity, making it more suitable for a QKD system.

量子密钥分发(QKD)可以帮助远程代理共享无条件密钥,并且借助诱饵状态协议可以提高可实现的密钥速率。为了在实验上实现QKD, agent应该使用基于LiNbO3的Mach-Zehnder (LNMZ)强度调制器准确地传输许多不同强度的脉冲。然而,LNMZ强度调制器的偏置漂移会影响QKD系统的性能。在这封信中,我们揭示了一个简单的RC电路模型来演示LNMZ强度调制器中的偏置漂移。在此基础上,提出了多步偏置稳定方案来控制偏置工作点。实验结果表明,该方案可以在较长的时间范围内消除任意工作点的偏置漂移。此外,该方案不需要任何反馈机制。这意味着我们的方案不会导致系统复杂性的任何增加,使其更适合于QKD系统。
{"title":"Arbitrary bias control of LiNbO3 based Mach-Zehnder intensity modulators for QKD system","authors":"Jun Teng,&nbsp;Shuang Wang,&nbsp;Zhen-Qiang Yin,&nbsp;Wei Chen,&nbsp;Guan-Jie Fan-Yuan,&nbsp;Guang-Can Guo,&nbsp;Zheng-Fu Han","doi":"10.1140/epjqt/s40507-023-00189-8","DOIUrl":"10.1140/epjqt/s40507-023-00189-8","url":null,"abstract":"<div><p>Quantum key distribution (QKD) can help distant agents to share unconditional secret keys, and the achievable secret key rate can be enhanced with the help of decoy-state protocol. To implement QKD experimentally, the agents are supposed to accurately transmit a number of different intensity pulses with the LiNbO<sub>3</sub> based Mach-Zehnder (LNMZ) intensity modulator. However, the bias drift of LNMZ intensity modulator may affect the performance of a QKD system. In this letter, we reveal a simple RC circuit model to demonstrate the bias drift in the LNMZ intensity modulator. And based on the model, we propose a multi-step bias stable scheme to control the bias working point. Experimental result shows that our scheme can eliminate the bias drift of at arbitrary working point within a long time range. Besides, there is no need of any feedback mechanisms in the scheme. This means our scheme will not lead to any increasement in system complexity, making it more suitable for a QKD system.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00189-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45478557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutral atom quantum computing hardware: performance and end-user perspective 中性原子量子计算硬件:性能和最终用户视角
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2023-08-28 DOI: 10.1140/epjqt/s40507-023-00190-1
Karen Wintersperger, Florian Dommert, Thomas Ehmer, Andrey Hoursanov, Johannes Klepsch, Wolfgang Mauerer, Georg Reuber, Thomas Strohm, Ming Yin, Sebastian Luber

We present an industrial end-user perspective on the current state of quantum computing hardware for one specific technological approach, the neutral atom platform. Our aim is to assist developers in understanding the impact of the specific properties of these devices on the effectiveness of algorithm execution. Based on discussions with different vendors and recent literature, we discuss the performance data of the neutral atom platform. Specifically, we focus on the physical qubit architecture, which affects state preparation, qubit-to-qubit connectivity, gate fidelities, native gate instruction set, and individual qubit stability. These factors determine both the quantum-part execution time and the end-to-end wall clock time relevant for end-users, but also the ability to perform fault-tolerant quantum computation in the future. We end with an overview of which applications have been shown to be well suited for the peculiar properties of neutral atom-based quantum computers.

我们提出了一个工业终端用户的角度对量子计算硬件的一个特定的技术方法,中性原子平台的当前状态。我们的目标是帮助开发人员了解这些设备的特定属性对算法执行有效性的影响。基于与不同厂商的讨论和最近的文献,我们讨论了中性原子平台的性能数据。具体来说,我们关注物理量子比特架构,它影响状态准备,量子比特到量子比特的连接,门保真度,本机门指令集和单个量子比特的稳定性。这些因素既决定了与最终用户相关的量子部分执行时间和端到端时钟时间,也决定了将来执行容错量子计算的能力。最后,我们概述了哪些应用已被证明非常适合中性原子基量子计算机的特殊性质。
{"title":"Neutral atom quantum computing hardware: performance and end-user perspective","authors":"Karen Wintersperger,&nbsp;Florian Dommert,&nbsp;Thomas Ehmer,&nbsp;Andrey Hoursanov,&nbsp;Johannes Klepsch,&nbsp;Wolfgang Mauerer,&nbsp;Georg Reuber,&nbsp;Thomas Strohm,&nbsp;Ming Yin,&nbsp;Sebastian Luber","doi":"10.1140/epjqt/s40507-023-00190-1","DOIUrl":"10.1140/epjqt/s40507-023-00190-1","url":null,"abstract":"<div><p>We present an industrial end-user perspective on the current state of quantum computing hardware for one specific technological approach, the neutral atom platform. Our aim is to assist developers in understanding the impact of the specific properties of these devices on the effectiveness of algorithm execution. Based on discussions with different vendors and recent literature, we discuss the performance data of the neutral atom platform. Specifically, we focus on the physical qubit architecture, which affects state preparation, qubit-to-qubit connectivity, gate fidelities, native gate instruction set, and individual qubit stability. These factors determine both the quantum-part execution time and the end-to-end wall clock time relevant for end-users, but also the ability to perform fault-tolerant quantum computation in the future. We end with an overview of which applications have been shown to be well suited for the peculiar properties of neutral atom-based quantum computers.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00190-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42045971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Dihedral lattice gauge theories on a quantum annealer 量子退火器上的二面体晶格规范理论
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2023-08-25 DOI: 10.1140/epjqt/s40507-023-00188-9
Michael Fromm, Owe Philipsen, Christopher Winterowd

We study lattice gauge theory with discrete, non-Abelian gauge groups. We extend the formalism of previous studies on D-Wave’s quantum annealer as a computing platform to finite, simply reducible gauge groups. As an example, we use the dihedral group (D_{n}) with (n=3,4) on a two plaquette ladder for which we provide proof-of-principle calculations of the ground-state and employ the known time evolution formalism with Feynman clock states.

研究了离散非阿贝尔规范群的格规范理论。我们将先前关于D-Wave量子退火器作为计算平台的研究的形式化推广到有限的、简单可约的规范群。作为一个例子,我们在两个斑块阶梯上使用二面体群(D_{n})和(n=3,4),我们提供了基态的原理证明计算,并采用已知的时间演化形式与费曼时钟状态。
{"title":"Dihedral lattice gauge theories on a quantum annealer","authors":"Michael Fromm,&nbsp;Owe Philipsen,&nbsp;Christopher Winterowd","doi":"10.1140/epjqt/s40507-023-00188-9","DOIUrl":"10.1140/epjqt/s40507-023-00188-9","url":null,"abstract":"<div><p>We study lattice gauge theory with discrete, non-Abelian gauge groups. We extend the formalism of previous studies on D-Wave’s quantum annealer as a computing platform to finite, simply reducible gauge groups. As an example, we use the dihedral group <span>(D_{n})</span> with <span>(n=3,4)</span> on a two plaquette ladder for which we provide proof-of-principle calculations of the ground-state and employ the known time evolution formalism with Feynman clock states.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00188-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46221493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
A study of polarization compensation for quantum networks 量子网络偏振补偿的研究
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2023-08-17 DOI: 10.1140/epjqt/s40507-023-00187-w
Matej Peranić, Marcus Clark, Rui Wang, Sima Bahrani, Obada Alia, Sören Wengerowsky, Anton Radman, Martin Lončarić, Mario Stipčević, John Rarity, Reza Nejabati, Siddarth Koduru Joshi

The information-theoretic unconditional security offered by quantum key distribution has spurred the development of larger quantum communication networks. However, as these networks grow so does the strong need to reduce complexity and overheads. Polarization-based entanglement distribution networks are a promising approach due to their scalability and no need for trusted nodes. Nevertheless, they are only viable if the birefringence of all-optical distribution fibres in the network is compensated to preserve the polarization-based quantum state. The brute force approach would require a few hundred fibre polarization controllers for even a moderately sized network. Instead, we propose and investigate four different realizations of polarization compensation schemes that can be used in quantum networks. We compare them based on the type of reference signals, complexity, effort, level of disruption to network operations and performance on a four-user quantum network.

量子密钥分配所提供的信息理论上的无条件安全性促进了更大规模量子通信网络的发展。然而,随着这些网络的增长,减少复杂性和开销的需求也越来越强烈。基于极化的纠缠分布网络由于其可扩展性和不需要可信节点而成为一种很有前途的方法。然而,它们只有在补偿网络中全光分布光纤的双折射以保持基于偏振的量子态时才可行。即使是中等规模的网络,暴力破解方法也需要几百个光纤偏振控制器。相反,我们提出并研究了四种可用于量子网络的极化补偿方案的不同实现。我们根据参考信号的类型、复杂性、工作量、对网络操作的中断程度和四用户量子网络的性能对它们进行了比较。
{"title":"A study of polarization compensation for quantum networks","authors":"Matej Peranić,&nbsp;Marcus Clark,&nbsp;Rui Wang,&nbsp;Sima Bahrani,&nbsp;Obada Alia,&nbsp;Sören Wengerowsky,&nbsp;Anton Radman,&nbsp;Martin Lončarić,&nbsp;Mario Stipčević,&nbsp;John Rarity,&nbsp;Reza Nejabati,&nbsp;Siddarth Koduru Joshi","doi":"10.1140/epjqt/s40507-023-00187-w","DOIUrl":"10.1140/epjqt/s40507-023-00187-w","url":null,"abstract":"<div><p>The information-theoretic unconditional security offered by quantum key distribution has spurred the development of larger quantum communication networks. However, as these networks grow so does the strong need to reduce complexity and overheads. Polarization-based entanglement distribution networks are a promising approach due to their scalability and no need for trusted nodes. Nevertheless, they are only viable if the birefringence of all-optical distribution fibres in the network is compensated to preserve the polarization-based quantum state. The brute force approach would require a few hundred fibre polarization controllers for even a moderately sized network. Instead, we propose and investigate four different realizations of polarization compensation schemes that can be used in quantum networks. We compare them based on the type of reference signals, complexity, effort, level of disruption to network operations and performance on a four-user quantum network.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00187-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48503568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Efficient multiparty quantum secret sharing based on a novel structure and single qubits 基于新结构和单量子比特的高效多方量子秘密共享
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2023-08-01 DOI: 10.1140/epjqt/s40507-023-00186-x
Shu-Yu Kuo, Kuo-Chun Tseng, Chia-Ching Yang, Yao-Hsin Chou

Quantum secret sharing (QSS) is a significant branch of quantum cryptography and can be widely used in various applications. Quantum secret sharing schemes can be developed by utilizing different features of quantum mechanics, and quantum secure direct communication (QSDC) is an effective way to achieve secret sharing using single qubits. The utilization of QSDC offers certain benefits, such as low cost, high security, and great potential for implementation with current technologies. However, the purpose of QSDC is different from that of QSS, which causes some vulnerabilities, such as dishonest participant attacks. We discover two critical factors that affect the security of traditional protocols. Firstly, they skip a few steps from the QSDC protocol to the QSS protocol. Secondly, the participants have different privileges. This can lead to participants with more privileges engaging in potential attack behavior. In light of these issues, this study proposes a new multiparty QSS scheme to address these vulnerabilities. The proposed protocol ensures the independence of each participant and grants them equal privileges. Analysis results demonstrate that it can defend against malicious attackers, retain the advantages of the QSDC protocol, and further reduce transmission costs. It achieves an excellent balance between security and performance.

量子秘密共享(QSS)是量子密码学的一个重要分支,可广泛应用于各种领域。利用量子力学的不同特性可以开发量子秘密共享方案,量子安全直接通信(QSDC)是利用单个量子比特实现秘密共享的有效途径。QSDC的使用提供了一些好处,例如低成本、高安全性以及使用当前技术实现的巨大潜力。但是,QSDC的目的与QSS不同,这就导致了一些漏洞,比如不诚实参与者攻击。我们发现了影响传统协议安全性的两个关键因素。首先,它们跳过了从QSDC协议到QSS协议的几个步骤。其次,参与者有不同的特权。这可能导致具有更多特权的参与者参与潜在的攻击行为。针对这些问题,本研究提出了一种新的多方QSS方案来解决这些漏洞。提议的协议确保每个参与者的独立性,并赋予他们平等的特权。分析结果表明,该算法既能防御恶意攻击者,又能保留QSDC协议的优点,进一步降低传输成本。它在安全性和性能之间实现了很好的平衡。
{"title":"Efficient multiparty quantum secret sharing based on a novel structure and single qubits","authors":"Shu-Yu Kuo,&nbsp;Kuo-Chun Tseng,&nbsp;Chia-Ching Yang,&nbsp;Yao-Hsin Chou","doi":"10.1140/epjqt/s40507-023-00186-x","DOIUrl":"10.1140/epjqt/s40507-023-00186-x","url":null,"abstract":"<div><p>Quantum secret sharing (QSS) is a significant branch of quantum cryptography and can be widely used in various applications. Quantum secret sharing schemes can be developed by utilizing different features of quantum mechanics, and quantum secure direct communication (QSDC) is an effective way to achieve secret sharing using single qubits. The utilization of QSDC offers certain benefits, such as low cost, high security, and great potential for implementation with current technologies. However, the purpose of QSDC is different from that of QSS, which causes some vulnerabilities, such as dishonest participant attacks. We discover two critical factors that affect the security of traditional protocols. Firstly, they skip a few steps from the QSDC protocol to the QSS protocol. Secondly, the participants have different privileges. This can lead to participants with more privileges engaging in potential attack behavior. In light of these issues, this study proposes a new multiparty QSS scheme to address these vulnerabilities. The proposed protocol ensures the independence of each participant and grants them equal privileges. Analysis results demonstrate that it can defend against malicious attackers, retain the advantages of the QSDC protocol, and further reduce transmission costs. It achieves an excellent balance between security and performance.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00186-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41460048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Microwave electrometry with bichromatic electromagnetically induced transparency in Rydberg atoms 里德伯原子中双色电诱导透明的微波电测量
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2023-07-14 DOI: 10.1140/epjqt/s40507-023-00184-z
Mingzhi Han, He Hao, Xiaoyun Song, Zheng Yin, Michal Parniak, Zhengmao Jia, Yandong Peng

A scheme for measuring microwave (MW) electric (E) fields is proposed based on bichromatic electromagnetically induced transparency (EIT) in Rydberg atoms. A bichromatic control field drives the excited state transition, whose absorption shows three EIT windows. When a MW field drives the Rydberg transition, the EIT windows split and six transmission peaks appear. It is interesting to find that the peak-to-peak distance of transmission spectrum is sensitive to the MW field strength, which can be used to measure MW E-field. Simulation results show that the spectral resolution could be increased by about 4 times, and the minimum detectable strength of the MW E-field may be improved by about 3 times compared with the common EIT scheme. After the Doppler averaging, the minimum detectable MW E-field strength is about 5 times larger than that without Doppler effect. Also, we investigate other effects on the sensitivity of the system.

提出了一种基于里德伯原子双色电致透明(EIT)的微波电场测量方案。双色控制场驱动激发态跃迁,其吸收显示三个EIT窗口。当一个MW场驱动Rydberg跃迁时,EIT窗口分裂并出现六个透射峰。有趣的是,透射谱的峰间距离对毫瓦场强很敏感,可以用来测量毫瓦场强。仿真结果表明,与普通EIT方案相比,该方案的光谱分辨率提高了约4倍,毫瓦电场的最小可探测强度提高了约3倍。经多普勒平均后,可探测到的最小毫瓦电场强度约为无多普勒效应时的5倍。此外,我们还研究了对系统灵敏度的其他影响。
{"title":"Microwave electrometry with bichromatic electromagnetically induced transparency in Rydberg atoms","authors":"Mingzhi Han,&nbsp;He Hao,&nbsp;Xiaoyun Song,&nbsp;Zheng Yin,&nbsp;Michal Parniak,&nbsp;Zhengmao Jia,&nbsp;Yandong Peng","doi":"10.1140/epjqt/s40507-023-00184-z","DOIUrl":"10.1140/epjqt/s40507-023-00184-z","url":null,"abstract":"<div><p>A scheme for measuring microwave (MW) electric (E) fields is proposed based on bichromatic electromagnetically induced transparency (EIT) in Rydberg atoms. A bichromatic control field drives the excited state transition, whose absorption shows three EIT windows. When a MW field drives the Rydberg transition, the EIT windows split and six transmission peaks appear. It is interesting to find that the peak-to-peak distance of transmission spectrum is sensitive to the MW field strength, which can be used to measure MW E-field. Simulation results show that the spectral resolution could be increased by about 4 times, and the minimum detectable strength of the MW E-field may be improved by about 3 times compared with the common EIT scheme. After the Doppler averaging, the minimum detectable MW E-field strength is about 5 times larger than that without Doppler effect. Also, we investigate other effects on the sensitivity of the system.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00184-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4576784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modular source for near-infrared quantum communication 近红外量子通信模块源
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2023-07-12 DOI: 10.1140/epjqt/s40507-023-00185-y
Federico Berra, Costantino Agnesi, Andrea Stanco, Marco Avesani, Sebastiano Cocchi, Paolo Villoresi, Giuseppe Vallone

We present a source of states for Quantum Key Distribution (QKD) based on a modular design exploiting the iPOGNAC, a stable, low-error, and calibration-free polarization modulation scheme, for both intensity and polarization encoding. This source is immune to the security vulnerabilities of other state sources such as side channels and some quantum hacking attacks. Remarkably, our intensity modulation scheme allows full tunability of the intensity ratio between the decoy and signal states, and mitigates patterning effects. The source was implemented and tested at the near-infrared optical band around 800 nm, of particular interest for satellite-based QKD. Furthermore, the modularity of the source simplifies its development, testing, and qualification, especially for space missions. For these reasons, our work paves the way for the development of the second generation of QKD satellites that can guarantee excellent performances at higher security levels.

我们提出了一种基于模块化设计的量子密钥分发(QKD)状态源,利用iPOGNAC,一种稳定,低误差,无需校准的偏振调制方案,用于强度和偏振编码。该源不受其他状态源(如侧信道)的安全漏洞和一些量子黑客攻击的影响。值得注意的是,我们的强度调制方案允许诱饵和信号状态之间的强度比完全可调,并减轻图案效应。该源在800 nm左右的近红外波段进行了实现和测试,这对基于卫星的QKD特别感兴趣。此外,源的模块化简化了其开发,测试和鉴定,特别是在空间任务中。由于这些原因,我们的工作为第二代QKD卫星的发展铺平了道路,这些卫星可以在更高的安全级别上保证出色的性能。
{"title":"Modular source for near-infrared quantum communication","authors":"Federico Berra,&nbsp;Costantino Agnesi,&nbsp;Andrea Stanco,&nbsp;Marco Avesani,&nbsp;Sebastiano Cocchi,&nbsp;Paolo Villoresi,&nbsp;Giuseppe Vallone","doi":"10.1140/epjqt/s40507-023-00185-y","DOIUrl":"10.1140/epjqt/s40507-023-00185-y","url":null,"abstract":"<div><p>We present a source of states for Quantum Key Distribution (QKD) based on a modular design exploiting the iPOGNAC, a stable, low-error, and calibration-free polarization modulation scheme, for both intensity and polarization encoding. This source is immune to the security vulnerabilities of other state sources such as side channels and some quantum hacking attacks. Remarkably, our intensity modulation scheme allows full tunability of the intensity ratio between the decoy and signal states, and mitigates patterning effects. The source was implemented and tested at the near-infrared optical band around 800 nm, of particular interest for satellite-based QKD. Furthermore, the modularity of the source simplifies its development, testing, and qualification, especially for space missions. For these reasons, our work paves the way for the development of the second generation of QKD satellites that can guarantee excellent performances at higher security levels.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00185-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4499981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum encryption in phase space with displacement operators 具有位移算子的相空间量子加密
IF 5.3 2区 物理与天体物理 Q1 OPTICS Pub Date : 2023-06-29 DOI: 10.1140/epjqt/s40507-023-00183-0
Randy Kuang, Adrian Chan

In photonic computing, the quantum systems consist of coherent states and squeezed coherent states. Common quantum gates found in these systems are: phase shift, displacement, and squeezing gates. These gates are all unitary and reversible. Outside of quantum systems, coherent states also plays a significant role in coherent optical communications with speeds of hundreds of gigabits per second. Secure optical communications is generally implemented at the data layer with classical symmetric encryption such as Advanced Standard Encryption or AES. This inevitably allows any wiretapping to capture the transmitted data either in the plaintext mode or in the encrypted ciphertext mode in the optical infrastructure. The recent and rapid developments in Quantum computing further lift up the need for quantum secure communications in the optical infrastructure. This paper proposes a novel quantum encryption in the coherent optical domain utilizing a displacement operator and implementing with IQ-MZM optical modules, called Quantum Encryption in Phase Space or QEPS. The communication peers share a secret used to seed cryptographic pseudo random number generators to produce a synchronized random number at both the transmitter and receiver. The synchronized random numbers are used to establish displacement operators to encrypt the coherent states at the transmission and decrypt the cipher coherent states at the receiver. Therefore, malicious parties tapping along the fibre line would not extract the message in transit from optical domain due to a high Bit Error Rate or BER. The optimal displacement operator is split into a standard 16-QAM and a random phase shift operator to enhance the transmission security. We analysis the transmission security with the wiretap channel model for semantic security. We have simulated the QEPS encryption and decryption for two data modulation schemes: QPSK and 16-QAM over 80 km for transmission speeds of 56 Gbps for QPSK and 112 Gbps for 16-QAM.

在光子计算中,量子系统由相干态和压缩相干态组成。在这些系统中发现的常见量子门有:相移、位移和挤压门。这些门都是统一可逆的。在量子系统之外,相干态在每秒数百千兆比特的相干光通信中也起着重要作用。安全光通信通常在数据层使用经典的对称加密(如高级标准加密或AES)来实现。这不可避免地允许任何窃听以明文模式或在光学基础设施中加密的密文模式捕获传输的数据。近年来量子计算的快速发展进一步提升了光学基础设施对量子安全通信的需求。本文提出了一种利用位移算子和IQ-MZM光模块实现相干光域量子加密的新方法,称为相空间量子加密(QEPS)。通信对等体共享一个秘密,用于种子加密伪随机数生成器,以在发送端和接收端产生同步的随机数。利用同步随机数建立位移算子,对传输端的相干态进行加密,对接收端的密码相干态进行解密。因此,由于高误码率或误码率,沿着光纤线路的恶意方无法从光域中提取传输中的信息。为了提高传输安全性,将最优位移算子拆分为标准16-QAM算子和随机移相算子。在语义安全方面,我们用窃听信道模型分析了传输安全性。我们模拟了QEPS加密和解密两种数据调制方案:QPSK和16-QAM,传输速度超过80公里,QPSK的传输速度为56 Gbps, 16-QAM的传输速度为112 Gbps。
{"title":"Quantum encryption in phase space with displacement operators","authors":"Randy Kuang,&nbsp;Adrian Chan","doi":"10.1140/epjqt/s40507-023-00183-0","DOIUrl":"10.1140/epjqt/s40507-023-00183-0","url":null,"abstract":"<div><p>In photonic computing, the quantum systems consist of coherent states and squeezed coherent states. Common quantum gates found in these systems are: phase shift, displacement, and squeezing gates. These gates are all unitary and reversible. Outside of quantum systems, coherent states also plays a significant role in coherent optical communications with speeds of hundreds of gigabits per second. Secure optical communications is generally implemented at the data layer with classical symmetric encryption such as Advanced Standard Encryption or AES. This inevitably allows any wiretapping to capture the transmitted data either in the plaintext mode or in the encrypted ciphertext mode in the optical infrastructure. The recent and rapid developments in Quantum computing further lift up the need for quantum secure communications in the optical infrastructure. This paper proposes a novel quantum encryption in the coherent optical domain utilizing a displacement operator and implementing with IQ-MZM optical modules, called Quantum Encryption in Phase Space or QEPS. The communication peers share a secret used to seed cryptographic pseudo random number generators to produce a synchronized random number at both the transmitter and receiver. The synchronized random numbers are used to establish displacement operators to encrypt the coherent states at the transmission and decrypt the cipher coherent states at the receiver. Therefore, malicious parties tapping along the fibre line would not extract the message in transit from optical domain due to a high Bit Error Rate or BER. The optimal displacement operator is split into a standard 16-QAM and a random phase shift operator to enhance the transmission security. We analysis the transmission security with the wiretap channel model for semantic security. We have simulated the QEPS encryption and decryption for two data modulation schemes: QPSK and 16-QAM over 80 km for transmission speeds of 56 Gbps for QPSK and 112 Gbps for 16-QAM.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00183-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5119462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
EPJ Quantum Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1