Mechanical response and microscopic damage mechanism of pre-flawed sandstone subjected to monotonic and multilevel cyclic loading: A laboratory-scale investigation

IF 11.7 1区 工程技术 Q1 MINING & MINERAL PROCESSING International Journal of Mining Science and Technology Pub Date : 2023-12-13 DOI:10.1016/j.ijmst.2023.11.002
Kesheng Li, Shengqi Yang, Chuanxiao Liu, Yun Chen, Guanglei Zhang, Qing Ma
{"title":"Mechanical response and microscopic damage mechanism of pre-flawed sandstone subjected to monotonic and multilevel cyclic loading: A laboratory-scale investigation","authors":"Kesheng Li, Shengqi Yang, Chuanxiao Liu, Yun Chen, Guanglei Zhang, Qing Ma","doi":"10.1016/j.ijmst.2023.11.002","DOIUrl":null,"url":null,"abstract":"<p>This study aims to investigate the mechanical response and acoustic emission (AE) characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads. Specifically, we explored how coplanar flaw angle and load type impact the strength and deformation behavior and microscopic damage mechanism. Results indicated that being fluctuated before rising with increasing fissure angle under monotonic loading, the peak strength of the specimen first increased slowly and then steeply under cyclic loading. The effect of multilevel cyclic loading on the mechanical parameters was more significant. For a single fatigue stage, the specimen underwent greater deformation in early cycles, which subsequently stabilized. Similar variation pattern was also reflected by AE count/energy/<em>b</em>-value. Crack behaviors were dominated by the fissure angle and load type and medium-scale crack accounted for 74.83%–86.44% of total crack. Compared with monotonic loading, crack distribution of specimen under cyclic loading was more complicated. Meanwhile, a simple model was proposed to describe the damage evolution of sandstone under cyclic loading. Finally, SEM images revealed that the microstructures at the fracture were mainly composed of intergranular fracture, and percentage of transgranular fracture jumped under cyclic loading due to the rapid release of elastic energy caused by high loading rate.</p>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"21 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ijmst.2023.11.002","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to investigate the mechanical response and acoustic emission (AE) characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads. Specifically, we explored how coplanar flaw angle and load type impact the strength and deformation behavior and microscopic damage mechanism. Results indicated that being fluctuated before rising with increasing fissure angle under monotonic loading, the peak strength of the specimen first increased slowly and then steeply under cyclic loading. The effect of multilevel cyclic loading on the mechanical parameters was more significant. For a single fatigue stage, the specimen underwent greater deformation in early cycles, which subsequently stabilized. Similar variation pattern was also reflected by AE count/energy/b-value. Crack behaviors were dominated by the fissure angle and load type and medium-scale crack accounted for 74.83%–86.44% of total crack. Compared with monotonic loading, crack distribution of specimen under cyclic loading was more complicated. Meanwhile, a simple model was proposed to describe the damage evolution of sandstone under cyclic loading. Finally, SEM images revealed that the microstructures at the fracture were mainly composed of intergranular fracture, and percentage of transgranular fracture jumped under cyclic loading due to the rapid release of elastic energy caused by high loading rate.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单级和多级循环加载下预成孔砂岩的机械响应和微观损伤机理:实验室规模的研究
研究了单阶和多级等幅循环荷载作用下预缺陷砂岩的力学响应和声发射特性。具体而言,我们探讨了共面缺陷角度和载荷类型如何影响强度和变形行为以及微观损伤机制。结果表明:在单调加载下,试件的峰值强度随裂缝角的增大先波动后上升,在循环加载下,峰值强度先缓慢上升后急剧上升;多级循环加载对其力学参数的影响更为显著。对于单一疲劳阶段,试样在早期循环中经历较大的变形,随后趋于稳定。AE计数/能量/b值也反映出类似的变化规律。裂纹行为受裂纹角度和载荷类型主导,中等规模裂纹占总裂纹的74.83% ~ 86.44%;与单调加载相比,循环加载下试件的裂纹分布更为复杂。同时,提出了一个描述循环荷载作用下砂岩损伤演化的简单模型。最后,SEM图像显示,在循环加载下,断裂处的显微组织以沿晶断裂为主,高加载速率导致弹性能快速释放,导致沿晶断裂比例大幅上升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mining Science and Technology
International Journal of Mining Science and Technology Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
19.10
自引率
11.90%
发文量
2541
审稿时长
44 days
期刊介绍: The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.
期刊最新文献
Gouge stability controlled by temperature elevation and obsidian addition in basaltic faults and implications for moonquakes Physical, mechanical and thermal properties of vacuum sintered HUST-1 lunar regolith simulant Design, test, and verification of in-situ condition preserved coring and analysis system in lunar-based simulation environment Machine learning applications on lunar meteorite minerals: From classification to mechanical properties prediction Formation of Tianwen-1 landing crater and mechanical properties of Martian soil near the landing site
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1