Filterless narrowband photodetectors enabled by controllable band modulation through ion migration: The case of halide perovskites

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Infomat Pub Date : 2023-12-12 DOI:10.1002/inf2.12506
Yu Li, Shanshan Yu, Junjie Yang, Kai Zhang, Mingyu Hu, Weitao Qiu, Fumin Guo, Wei Qian, Sean Reinecke, Tao Chen, Makhsud I. Saidaminov, Jian Wang, Shihe Yang
{"title":"Filterless narrowband photodetectors enabled by controllable band modulation through ion migration: The case of halide perovskites","authors":"Yu Li,&nbsp;Shanshan Yu,&nbsp;Junjie Yang,&nbsp;Kai Zhang,&nbsp;Mingyu Hu,&nbsp;Weitao Qiu,&nbsp;Fumin Guo,&nbsp;Wei Qian,&nbsp;Sean Reinecke,&nbsp;Tao Chen,&nbsp;Makhsud I. Saidaminov,&nbsp;Jian Wang,&nbsp;Shihe Yang","doi":"10.1002/inf2.12506","DOIUrl":null,"url":null,"abstract":"<p>Narrowband photodetectors conventionally rely on optical structure design or bandpass filters to achieve the narrowband regime. Recently, a strategy for filterless narrowband photoresponse based on the charge collection narrowing (CCN) mechanism was reported. However, the CCN strategy requires an electrically and optically “thick” photoactive layer, which poses challenges in controlling the narrowband photoresponse. Here we propose a novel strategy for constructing narrowband photodetectors by leveraging the inherent ion migration in perovskites, which we term “band modulation narrowing” (BMN). By manipulating the ion migration with external stimuli such as illumination, temperature, and bias voltage, we can regulate in situ the energy-band structure of perovskite photodetectors (PPDs) and hence their spectral response. Combining the Fermi energy levels obtained by the Kelvin probe force microscopy, the internal potential profiles from solar cell capacitance simulator simulation, and the anion accumulation revealed by the transient ion-drift technique, we discover two critical mechanisms behind our BMN strategy: the extension of an optically active but electronically dead region proximal to the top electrode and the down-bending energy bands near the electron transport layer. Our findings offer a case for harnessing the often-annoying ion migration for developing advanced narrowband PPDs.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 1","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12506","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12506","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Narrowband photodetectors conventionally rely on optical structure design or bandpass filters to achieve the narrowband regime. Recently, a strategy for filterless narrowband photoresponse based on the charge collection narrowing (CCN) mechanism was reported. However, the CCN strategy requires an electrically and optically “thick” photoactive layer, which poses challenges in controlling the narrowband photoresponse. Here we propose a novel strategy for constructing narrowband photodetectors by leveraging the inherent ion migration in perovskites, which we term “band modulation narrowing” (BMN). By manipulating the ion migration with external stimuli such as illumination, temperature, and bias voltage, we can regulate in situ the energy-band structure of perovskite photodetectors (PPDs) and hence their spectral response. Combining the Fermi energy levels obtained by the Kelvin probe force microscopy, the internal potential profiles from solar cell capacitance simulator simulation, and the anion accumulation revealed by the transient ion-drift technique, we discover two critical mechanisms behind our BMN strategy: the extension of an optically active but electronically dead region proximal to the top electrode and the down-bending energy bands near the electron transport layer. Our findings offer a case for harnessing the often-annoying ion migration for developing advanced narrowband PPDs.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过离子迁移实现可控波段调制的无滤光片窄带光电探测器:卤化物过氧化物
窄带光电探测器通常依靠光学结构设计或带通滤波器来实现窄带系统。最近,一种基于电荷收集收窄(CCN)机制的无滤波器窄带光响应策略被报道出来。然而,CCN 策略需要电学和光学 "厚 "光活性层,这给控制窄带光响应带来了挑战。在这里,我们提出了一种利用包晶石中固有的离子迁移来构建窄带光电探测器的新策略,我们称之为 "带调制收窄"(BMN)。通过在光照、温度和偏置电压等外部刺激下操纵离子迁移,我们可以就地调节包晶体光电探测器(PPD)的能带结构,进而调节其光谱响应。结合开尔文探针力显微镜获得的费米能级、太阳能电池电容模拟器模拟获得的内部电位曲线,以及瞬态离子漂移技术揭示的阴离子积累,我们发现了 BMN 策略背后的两个关键机制:光学活跃但电子死区靠近顶部电极的延伸,以及电子传输层附近能带的下弯。我们的研究结果为利用经常令人烦恼的离子迁移来开发先进的窄带聚光二极体提供了一个案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
期刊最新文献
Cover Image Issue Information Back cover image Cover Image Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1