The integration of Co single atoms and nanoclusters facilitates synergistic pincer trapping and catalysis of polysulfides, driving high-performance Li-S batteries.
The integration of Co single atoms and nanoclusters facilitates synergistic pincer trapping and catalysis of polysulfides, driving high-performance Li-S batteries.
All-perovskite tandem solar cell: a cutting-edge technology designed for efficient and sustainable terrestrial and space energy generation.
Prof. Xiaoshuang Chen et al. propose an asymmetric vertical heterojunction with a co-aligned built-in electric field, achieving high-sensitivity multicolor uncooled photoresponse.
Chalcogenides, despite their versatile functionality, share a notably similar local structure in their amorphous states. Particularly in electronic phase-change memory applications, distinguishing these glasses from neighboring compositions that do not possess memory capabilities is inherently difficult when employing traditional analytical methods. This has led to a dilemma in materials design since an atomistic view of the arrangement in the amorphous state is the key to understanding and optimizing the functionality of these glasses. To tackle this challenge, we present a machine learning (ML) approach to separate electronic phase-change materials (ePCMs) from other chalcogenides, based upon subtle differences in the short-range order inside the glassy phase. Leveraging the established structure–property relations in chalcogenide glasses, we select suitable features to train accurate machine learning models, even with a modestly sized dataset. The trained model accurately discerns the critical transition point between glass compositions suitable for use as ePCMs and those that are not, particularly for both GeTe–GeSe and Sb2Te3–Sb2Se3 materials, in line with experiments. Furthermore, by extracting the physical knowledge that the ML model has offered, we pinpoint three pivotal structural features of amorphous chalcogenides, that is, the bond angle, packing efficiency, and the length of the fourth bond, which provide a map for materials design with the ability to “predict” and “explain”. All three of the above features point to the smaller Peierls-like distortion and more well-defined octahedral clusters in amorphous ePCMs than non-ePCMs. Our study delves into the mechanisms shaping these structural attributes in amorphous ePCMs, yielding valuable insights for the AI-powered discovery of novel materials.
The cover art, prepared by Ong's group at Xiamen University Malaysia, showcases the advancement and application of layered double hydroxides (LDHs) and other cutting-edge electrocatalysts, driving the transition to a net-zero future. The train symbolizes the momentum towards renewable fuels powered by next-generation electrochemical energy conversion and storage technologies. This captivating journey highlights the development of robust, advanced electrocatalysts that tackle environmental challenges while generating value-added energy products.
Multiresonance organoboron helicenes are promising narrowband circularly polarized luminescence (CPL) emitters, which, however, still face formidable challenges to balance a large luminescence dissymmetry factor (glum) and a high luminescence efficiency. Here, two pairs of organoboron enantiomers (P/M-BN[8]H-ICz and P/M-BN[8]H-BO) with the same hetero[8]helicene geometric structures are developed through polycyclization decoration. We find that it is the helicity of helicene electronic structures rather than the geometrical one that determines the molecular dissymmetry property as a larger electronic helicity could enhance the electron-orbital coupling of the helicene structure. Therefore, P/M-BN[8]H-BO who possesses a hetero[8]helicene electronic structure realizes a nearly one-order-of-magnitude higher glum (+2.75/−2.52 × 10−3) and a higher photoluminescence quantum yield (PLQY) of 99% compared with P/M-BN[8]H-ICz bearing only a hetero[6]helicene electronic distribution structure (glum of only +2.41/−2.37 × 10−4 and PLQY of 95%). Moreover, BN[8]H-BO exhibits a narrowband green emission peaking at 538 nm with a full-width at half-maxima of merely 34 nm, narrower than most multiresonance CPL helicenes. The corresponding organic light-emitting diodes simultaneously realize a high external quantum efficiency of 31.7%, an electroluminescence dissymmetry factors (gEL) of +5.23/−5.07 × 10−3, and an extremely long LT95 (time to 95% of the initial luminance) of over 731 h at an initial luminance of 1000 cd m–2.
The cover image showcases the application of a cutting-edge two-dimensional material in the electrocatalytic direct seawater splitting process. The central figure depicts an electrode made from this two-dimensional material, featuring easily accessible active sites that symbolize its high efficiency in seawater splitting. The surrounding gradient of green indicates the flow of seawater, while the light spheres around the electrode represent the bubbles of water molecules. The light blue and orange spheres signify the hydrogen and oxygen produced during the electrocatalytic process. The overall design emphasizes the crucial role of two-dimensional materials in advancing seawater splitting technology, suggesting potential for future sustainable energy production.
All-perovskite tandem solar cells have garnered considerable attention because of their potential to outperform single-junction cells. However, charge recombination losses within narrow-bandgap (NBG) perovskite subcells hamper the advancement of this technology. Herein, we introduce a lithium salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), for modifying NBG perovskites. Interestingly, LiTFSI bifunctionally passivates the surface and bulk of NBG by dissociating into Li+ and TFSI− ions. We found that TFSI− passivates halide vacancies on the perovskite surface, reducing nonradiative recombination, while Li+ acts as an interstitial n-type dopant, mitigating the defects of NBG perovskites and potentially suppressing halide migration. Furthermore, the underlying mechanism of LiTFSI passivation was investigated through the density functional theory calculations. Accordingly, LiTFSI facilitates charge extraction and extends the charge carrier lifetime, resulting in an NBG device with power conversion efficiency (PCE) of 22.04% (certified PCE of 21.42%) and an exceptional fill factor of 81.92%. This enables the fabrication of all-perovskite tandem solar cells with PCEs of 27.47% and 26.27% for aperture areas of 0.0935 and 1.02 cm2, respectively.
Multicolor photodetection, essential for applications in infrared imaging, environmental monitoring, and spectral analysis, is often limited by the narrow bandgaps of conventional materials, which struggle with speed, sensitivity, and room-temperature operation. We address these issues with a multicolor uncooled photodetector based on an asymmetric Au/SnS/Gr vertical heterojunction with inversion-symmetry breaking. This design utilizes the complementary bandgaps of SnS and graphene to enhance the efficiency of carriers' transport through consistently oriented built-in electric fields, achieving significant advancements in directional photoresponse. The device demonstrates highly sensitive photoelectric detection performance, such as a responsivity (R) of 55.4–89.7 A W–1 with rapid response times of approximately 104 μs, and exceptional detectivity (D*) of 2.38 × 1010 Jones ~8.19 × 1013 Jones from visible (520 nm) to infrared (2000 nm) light, making it suitable for applications demanding an imaging resolution of ~0.5 mm. Additionally, the comparative analysis reveals that the asymmetric vertical heterojunction outperforms its counterparts, exhibiting approximately 9-fold the photoresponse of symmetric vertical heterojunction and almost 100-fold that of symmetric horizontal heterojunction. This highly sensitive multicolor detector holds significant promise for applications in advanced versatile object detection and imaging recognition systems.
Currently, conventional organic liquid electrolytes (OLEs) are the main limiting factor for the next generation of high-energy lithium batteries. There is growing interest in inorganic solid-state electrolytes (ISEs). However, ISEs still face various challenges in practical applications, particularly at the interface between ISE and the electrode, which significantly affects the performance of solid-state batteries (SSBs). In recent decades, atomic and molecular layer deposition (ALD and MLD) techniques, widely used to manipulate interface properties and construct novel electrode structures, have emerged as promising strategies to address the interface challenges faced by ISEs. This review focuses on the latest developments and applications of ALD/MLD technology in SSBs, including interface modification of cathodes and lithium metal anodes. From the perspective of interface strategy mechanism, we present experimental progress and computational simulations related to interface chemistry and electrochemical stability in thermodynamic contents. In addition, this article explores the future direction and prospects for ALD/MLD in dynamic stability engineering of interfaces SSBs.