{"title":"Electrohydrodynamic printing for high resolution patterning of flexible electronics toward industrial applications","authors":"Zhouping Yin, Dazhi Wang, Yunlong Guo, Zhiyuan Zhao, Liqiang Li, Wei Chen, Yongqing Duan","doi":"10.1002/inf2.12505","DOIUrl":null,"url":null,"abstract":"<p>Electrohydrodynamic (EHD) printing technique, which deposits micro/nanostructures through high electric force, has recently attracted significant research interest owing to their fascinating characteristics in high resolution (<1 μm), wide material applicability (ink viscosity 1–10 000 cps), tunable printing modes (electrospray, electrospinning, and EHD jet printing), and compatibility with flexible/wearable applications. Since the laboratory level of the EHD printed electronics' resolution and efficiency is gradually approaching the commercial application level, an urgent need for developing EHD technique from laboratory into industrialization have been put forward. Herein, we first discuss the EHD printing technique, including the ink design, droplet formation, and key technologies for promoting printing efficiency/accuracy. Then we summarize the recent progress of EHD printing in fabrication of displays, organic field-effect transistors (OFETs), transparent electrodes, and sensors and actuators. Finally, a brief summary and the outlook for future research effort are presented.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12505","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12505","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrohydrodynamic (EHD) printing technique, which deposits micro/nanostructures through high electric force, has recently attracted significant research interest owing to their fascinating characteristics in high resolution (<1 μm), wide material applicability (ink viscosity 1–10 000 cps), tunable printing modes (electrospray, electrospinning, and EHD jet printing), and compatibility with flexible/wearable applications. Since the laboratory level of the EHD printed electronics' resolution and efficiency is gradually approaching the commercial application level, an urgent need for developing EHD technique from laboratory into industrialization have been put forward. Herein, we first discuss the EHD printing technique, including the ink design, droplet formation, and key technologies for promoting printing efficiency/accuracy. Then we summarize the recent progress of EHD printing in fabrication of displays, organic field-effect transistors (OFETs), transparent electrodes, and sensors and actuators. Finally, a brief summary and the outlook for future research effort are presented.
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.