{"title":"Seeking the neural representation of statistical properties in print during implicit processing of visual words","authors":"Jianyi Liu, Tengwen Fan, Yan Chen, Jingjing Zhao","doi":"10.1038/s41539-023-00209-3","DOIUrl":null,"url":null,"abstract":"<p>Statistical learning (SL) plays a key role in literacy acquisition. Studies have increasingly revealed the influence of distributional statistical properties of words on visual word processing, including the effects of word frequency (lexical level) and mappings between orthography, phonology, and semantics (sub-lexical level). However, there has been scant evidence to directly confirm that the statistical properties contained in print can be directly characterized by neural activities. Using time-resolved representational similarity analysis (RSA), the present study examined neural representations of different types of statistical properties in visual word processing. From the perspective of predictive coding, an equal probability sequence with low built-in prediction precision and three oddball sequences with high built-in prediction precision were designed with consistent and three types of inconsistent (orthographically inconsistent, orthography-to-phonology inconsistent, and orthography-to-semantics inconsistent) Chinese characters as visual stimuli. In the three oddball sequences, consistent characters were set as the standard stimuli (probability of occurrence <i>p</i> = 0.75) and three types of inconsistent characters were set as deviant stimuli (<i>p</i> = 0.25), respectively. In the equal probability sequence, the same consistent and inconsistent characters were presented randomly with identical occurrence probability (<i>p</i> = 0.25). Significant neural representation activities of word frequency were observed in the equal probability sequence. By contrast, neural representations of sub-lexical statistics only emerged in oddball sequences where short-term predictions were shaped. These findings reveal that the statistical properties learned from long-term print environment continues to play a role in current word processing mechanisms and these mechanisms can be modulated by short-term predictions.</p>","PeriodicalId":48503,"journal":{"name":"npj Science of Learning","volume":"5 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Science of Learning","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1038/s41539-023-00209-3","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Statistical learning (SL) plays a key role in literacy acquisition. Studies have increasingly revealed the influence of distributional statistical properties of words on visual word processing, including the effects of word frequency (lexical level) and mappings between orthography, phonology, and semantics (sub-lexical level). However, there has been scant evidence to directly confirm that the statistical properties contained in print can be directly characterized by neural activities. Using time-resolved representational similarity analysis (RSA), the present study examined neural representations of different types of statistical properties in visual word processing. From the perspective of predictive coding, an equal probability sequence with low built-in prediction precision and three oddball sequences with high built-in prediction precision were designed with consistent and three types of inconsistent (orthographically inconsistent, orthography-to-phonology inconsistent, and orthography-to-semantics inconsistent) Chinese characters as visual stimuli. In the three oddball sequences, consistent characters were set as the standard stimuli (probability of occurrence p = 0.75) and three types of inconsistent characters were set as deviant stimuli (p = 0.25), respectively. In the equal probability sequence, the same consistent and inconsistent characters were presented randomly with identical occurrence probability (p = 0.25). Significant neural representation activities of word frequency were observed in the equal probability sequence. By contrast, neural representations of sub-lexical statistics only emerged in oddball sequences where short-term predictions were shaped. These findings reveal that the statistical properties learned from long-term print environment continues to play a role in current word processing mechanisms and these mechanisms can be modulated by short-term predictions.