Quantification of lung surfactant lipid (dipalmitoylphosphatidylcholine/sphingomyelin) ratio in binary liposomes using Raman spectroscopy

IF 2.4 3区 化学 Q2 SPECTROSCOPY Journal of Raman Spectroscopy Pub Date : 2023-12-13 DOI:10.1002/jrs.6631
Aneesh Vincent Veluthandath, Waseem Ahmed, Jens Madsen, Howard W. Clark, Anthony D. Postle, James S. Wilkinson, Ganapathy Senthil Murugan
{"title":"Quantification of lung surfactant lipid (dipalmitoylphosphatidylcholine/sphingomyelin) ratio in binary liposomes using Raman spectroscopy","authors":"Aneesh Vincent Veluthandath,&nbsp;Waseem Ahmed,&nbsp;Jens Madsen,&nbsp;Howard W. Clark,&nbsp;Anthony D. Postle,&nbsp;James S. Wilkinson,&nbsp;Ganapathy Senthil Murugan","doi":"10.1002/jrs.6631","DOIUrl":null,"url":null,"abstract":"<p>Early diagnosis of neonatal respiratory distress syndrome (nRDS) is important in reducing the mortality of preterm babies. Knowledge of the ratio of two components of lung surfactant, dipalmitoylphosphatidylcholine (DPPC), and sphingomyelin (SM) can be used as biomarkers of lung maturity and inform treatment. Raman spectroscopy is a powerful tool to analyze vibrational spectra of organic molecules which requires only limited sample preparation steps and, unlike IR spectroscopy, is not masked by water absorption. In this paper, we explore the potential of using Raman spectroscopy as a tool to estimate the ratio of DPPC and SM from aqueous vesicles of binary mixture of DPPC and SM. We demonstrate that the ratio of DPPC and SM can be estimated by estimating the ratio of intensity of CO stretch of DPPC and CC stretch of SM as well as CO stretch of DPPC and amide I of SM. Further, we employ a partial least squares regression (PLSR) model to automate the estimation and demonstrate that PLSR method can predict the DPPC and SM ratio with an <i>R</i><sup>2</sup> value of 0.968.</p>","PeriodicalId":16926,"journal":{"name":"Journal of Raman Spectroscopy","volume":"55 3","pages":"386-393"},"PeriodicalIF":2.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrs.6631","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Raman Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6631","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Early diagnosis of neonatal respiratory distress syndrome (nRDS) is important in reducing the mortality of preterm babies. Knowledge of the ratio of two components of lung surfactant, dipalmitoylphosphatidylcholine (DPPC), and sphingomyelin (SM) can be used as biomarkers of lung maturity and inform treatment. Raman spectroscopy is a powerful tool to analyze vibrational spectra of organic molecules which requires only limited sample preparation steps and, unlike IR spectroscopy, is not masked by water absorption. In this paper, we explore the potential of using Raman spectroscopy as a tool to estimate the ratio of DPPC and SM from aqueous vesicles of binary mixture of DPPC and SM. We demonstrate that the ratio of DPPC and SM can be estimated by estimating the ratio of intensity of CO stretch of DPPC and CC stretch of SM as well as CO stretch of DPPC and amide I of SM. Further, we employ a partial least squares regression (PLSR) model to automate the estimation and demonstrate that PLSR method can predict the DPPC and SM ratio with an R2 value of 0.968.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用拉曼光谱量化二元脂质体中的肺表面活性脂质(二棕榈酰磷脂酰胆碱/鞘磷脂)比例
早期诊断新生儿呼吸窘迫综合征(nRDS)对于降低早产儿死亡率非常重要。了解肺表面活性物质的两种成分--二棕榈酰磷脂酰胆碱(DPPC)和鞘磷脂(SM)的比例可作为肺成熟度的生物标志物,并为治疗提供依据。拉曼光谱是一种分析有机分子振动光谱的强大工具,它只需要有限的样品制备步骤,而且与红外光谱不同,它不会被水的吸收所掩盖。在本文中,我们探讨了利用拉曼光谱作为一种工具,从 DPPC 和 SM 的二元混合物水溶液囊泡中估算 DPPC 和 SM 比例的潜力。我们证明,可以通过估算 DPPC 的 CO 伸展和 SM 的 CC 伸展以及 DPPC 的 CO 伸展和 SM 的酰胺 I 的强度比来估算 DPPC 和 SM 的比例。此外,我们还采用了偏最小二乘回归(PLSR)模型来自动进行估算,结果表明 PLSR 方法可以预测 DPPC 和 SM 的比率,R2 值为 0.968。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
8.00%
发文量
185
审稿时长
3.0 months
期刊介绍: The Journal of Raman Spectroscopy is an international journal dedicated to the publication of original research at the cutting edge of all areas of science and technology related to Raman spectroscopy. The journal seeks to be the central forum for documenting the evolution of the broadly-defined field of Raman spectroscopy that includes an increasing number of rapidly developing techniques and an ever-widening array of interdisciplinary applications. Such topics include time-resolved, coherent and non-linear Raman spectroscopies, nanostructure-based surface-enhanced and tip-enhanced Raman spectroscopies of molecules, resonance Raman to investigate the structure-function relationships and dynamics of biological molecules, linear and nonlinear Raman imaging and microscopy, biomedical applications of Raman, theoretical formalism and advances in quantum computational methodology of all forms of Raman scattering, Raman spectroscopy in archaeology and art, advances in remote Raman sensing and industrial applications, and Raman optical activity of all classes of chiral molecules.
期刊最新文献
Issue Information Issue Information Sensitivity of the C–H Stretching Band in Raman Spectra to Phospholipid Order A Novel Incident Circular Polarized Light Raman Optical Activity (ICP‐ROA) Spectrometer With Advanced Polarization Control Micro‐Raman Spectroscopy for the Identification of Drawing Materials Used Throughout the 17th and 20th Centuries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1