Shichao Wu, Yingbo Liu, Lei Yang, Xiaoying Liu, Xingxu Li, Yongyuan Xiang, Yunyu Gong
{"title":"AstroSer: Leveraging Deep Learning for Efficient Content-based Retrieval in Massive Solar-observation Images","authors":"Shichao Wu, Yingbo Liu, Lei Yang, Xiaoying Liu, Xingxu Li, Yongyuan Xiang, Yunyu Gong","doi":"10.1088/1538-3873/ad0e7e","DOIUrl":null,"url":null,"abstract":"Rapid and proficient data retrieval is an essential component of modern astronomical research. In this paper, we address the challenge of retrieving astronomical image content by leveraging state-of-the-art deep learning techniques. We have designed a retrieval model, HybridVR, that integrates the capabilities of the deep learning models ResNet50 and VGG16 and have used it to extract key features of solar activity and solar environmental characteristics from observed images. This model enables efficient image matching and allows for content-based image retrieval (CBIR). Experimental results demonstrate that the model can achieve up to 98% similarity during CBIR while exhibiting adaptability and scalability. Our work has implications for astronomical research, data management, and education, and it can contribute to optimizing the utilization of astronomical image data. It also serves as a useful example of the application of deep learning technology in the field of astronomy.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of the Pacific","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1538-3873/ad0e7e","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid and proficient data retrieval is an essential component of modern astronomical research. In this paper, we address the challenge of retrieving astronomical image content by leveraging state-of-the-art deep learning techniques. We have designed a retrieval model, HybridVR, that integrates the capabilities of the deep learning models ResNet50 and VGG16 and have used it to extract key features of solar activity and solar environmental characteristics from observed images. This model enables efficient image matching and allows for content-based image retrieval (CBIR). Experimental results demonstrate that the model can achieve up to 98% similarity during CBIR while exhibiting adaptability and scalability. Our work has implications for astronomical research, data management, and education, and it can contribute to optimizing the utilization of astronomical image data. It also serves as a useful example of the application of deep learning technology in the field of astronomy.
期刊介绍:
The Publications of the Astronomical Society of the Pacific (PASP), the technical journal of the Astronomical Society of the Pacific (ASP), has been published regularly since 1889, and is an integral part of the ASP''s mission to advance the science of astronomy and disseminate astronomical information. The journal provides an outlet for astronomical results of a scientific nature and serves to keep readers in touch with current astronomical research. It contains refereed research and instrumentation articles, invited and contributed reviews, tutorials, and dissertation summaries.