{"title":"Residual mechanical resistance of concrete blocks and laying mortars after high temperatures","authors":"Rafaela de Oliveira Amaral, Armando Lopes Moreno Jr, Wallison Angelim Medeiros, Guilherme Aris Parsekian","doi":"10.1002/fam.3186","DOIUrl":null,"url":null,"abstract":"<p>This paper reports an experimental campaign to evaluate the residual mechanical resistance after high temperatures of two structural masonry components: block and mortar. Residual compressive strength and deformation modulus of four different hollow concrete blocks and two different mortar mixes after heating at high temperatures are investigated. The test method used was the one recommended by RILEM TC 200 for mortars and an adaptation of the same method proposed by Medeiros et al. suitable for the geometry of hollow blocks. Despite the sharp drop in the deformation modulus after heating blocks and mortar, no different behaviours are observed in the deformability of the materials caused by the variables studied. The same cannot be said in relation to the variation of the residual compressive strength of the blocks, which is affected by the variables: initial nominal compressive strength and width of the concrete block. Regarding laying mortars, the results confirmed the small influence of compressive strength on the evolution of residual mechanical strength. The data and analyses reported here on the residual mechanical properties of hollow concrete blocks produced from a concrete mixture of very dry consistency, vibro-pressed and with normal weight aggregates are relevant, since the data found in the literature generally refer to the wet cast concrete material and in cylindrical bodies.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 3","pages":"324-337"},"PeriodicalIF":2.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3186","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports an experimental campaign to evaluate the residual mechanical resistance after high temperatures of two structural masonry components: block and mortar. Residual compressive strength and deformation modulus of four different hollow concrete blocks and two different mortar mixes after heating at high temperatures are investigated. The test method used was the one recommended by RILEM TC 200 for mortars and an adaptation of the same method proposed by Medeiros et al. suitable for the geometry of hollow blocks. Despite the sharp drop in the deformation modulus after heating blocks and mortar, no different behaviours are observed in the deformability of the materials caused by the variables studied. The same cannot be said in relation to the variation of the residual compressive strength of the blocks, which is affected by the variables: initial nominal compressive strength and width of the concrete block. Regarding laying mortars, the results confirmed the small influence of compressive strength on the evolution of residual mechanical strength. The data and analyses reported here on the residual mechanical properties of hollow concrete blocks produced from a concrete mixture of very dry consistency, vibro-pressed and with normal weight aggregates are relevant, since the data found in the literature generally refer to the wet cast concrete material and in cylindrical bodies.
期刊介绍:
Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals.
Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.