Zongqin Wang , Yunpeng Zhang , Mengfan Zong , Tao Wu , Wenbing Wu , Guoxiong Mei , Shengtao Zhou
{"title":"Nonlinear consolidation of arbitrary layered soil with continuous drainage boundary: An approximate closed-form solution","authors":"Zongqin Wang , Yunpeng Zhang , Mengfan Zong , Tao Wu , Wenbing Wu , Guoxiong Mei , Shengtao Zhou","doi":"10.1016/j.sandf.2023.101406","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the double nonlinear consolidation constitutive associated with the compression and permeability coefficients, presented by Mesri and Rokhsar (1974), this paper derives an approximate closed-form solution for the one-dimensional nonlinear consolidation of the arbitrary layered soils incorporating the continuous drainage boundary condition. The approximate closed-form solution is obtained by the homogenization of the boundary conditions and eigenfunction method. A model test is conducted to justify the rationality of the approximation and the continuous drainage condition utilized in this study. The calculated results are also compared with those acquired from the simplified analytical solution and the finite difference method. A parametric study is conducted to investigate the influence of various parameters on the consolidation process. The most significant finding is that the influence of <span><math><mrow><msub><mi>N</mi><mtext>q</mtext></msub></mrow></math></span> appears to be completely different for the cases when <span><math><mrow><mrow><msub><mi>C</mi><mtext>c</mtext></msub><mo>/</mo><msub><mi>C</mi><mtext>k</mtext></msub></mrow><mo>></mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mrow><msub><mi>C</mi><mtext>c</mtext></msub><mo>/</mo><msub><mi>C</mi><mtext>k</mtext></msub></mrow><mo><</mo><mn>1</mn></mrow></math></span>. When <span><math><mrow><mrow><msub><mi>C</mi><mtext>c</mtext></msub><mo>/</mo><msub><mi>C</mi><mtext>k</mtext></msub></mrow><mo>></mo><mn>1</mn></mrow></math></span>, the increase of <span><math><mrow><msub><mi>N</mi><mtext>q</mtext></msub></mrow></math></span> shows an adverse influence on the consolidation, whereas the influence becomes positive when <span><math><mrow><mrow><msub><mi>C</mi><mtext>c</mtext></msub><mo>/</mo><msub><mi>C</mi><mtext>k</mtext></msub></mrow><mo><</mo><mn>1</mn></mrow></math></span>. The approximate solution derived herein offers a rigorous analytical approach for the double nonlinear consolidation problems of arbitrary layered soils, providing an effective benchmark for comparison and verification of future sophisticated numerical approaches.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S003808062300135X/pdfft?md5=b85711ac79573054859b226f0e239bc7&pid=1-s2.0-S003808062300135X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003808062300135X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the double nonlinear consolidation constitutive associated with the compression and permeability coefficients, presented by Mesri and Rokhsar (1974), this paper derives an approximate closed-form solution for the one-dimensional nonlinear consolidation of the arbitrary layered soils incorporating the continuous drainage boundary condition. The approximate closed-form solution is obtained by the homogenization of the boundary conditions and eigenfunction method. A model test is conducted to justify the rationality of the approximation and the continuous drainage condition utilized in this study. The calculated results are also compared with those acquired from the simplified analytical solution and the finite difference method. A parametric study is conducted to investigate the influence of various parameters on the consolidation process. The most significant finding is that the influence of appears to be completely different for the cases when and . When , the increase of shows an adverse influence on the consolidation, whereas the influence becomes positive when . The approximate solution derived herein offers a rigorous analytical approach for the double nonlinear consolidation problems of arbitrary layered soils, providing an effective benchmark for comparison and verification of future sophisticated numerical approaches.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.