Alessia Remigante, Sara Spinelli, Paolo Zuccolini, Paola Gavazzo, Angela Marino, Michael Pusch, Rossana Morabito, Silvia Dossena
{"title":"Melatonin protects Kir2.1 function in an oxidative stress-related model of aging neuroglia","authors":"Alessia Remigante, Sara Spinelli, Paolo Zuccolini, Paola Gavazzo, Angela Marino, Michael Pusch, Rossana Morabito, Silvia Dossena","doi":"10.1002/biof.2024","DOIUrl":null,"url":null,"abstract":"<p>Melatonin is a pleiotropic biofactor and an effective antioxidant and free radical scavenger and, as such, can be protective in oxidative stress-related brain conditions including epilepsy and aging. To test the potential protective effect of melatonin on brain homeostasis and identify the corresponding molecular targets, we established a new model of oxidative stress-related aging neuroglia represented by U-87 MG cells exposed to D-galactose (D-Gal). This model was characterized by a substantial elevation of markers of oxidative stress, lipid peroxidation, and protein oxidation. The function of the inward rectifying K<sup>+</sup> channel Kir2.1, which was identified as the main Kir channel endogenously expressed in these cells, was dramatically impaired. Kir2.1 was unlikely a direct target of oxidative stress, but the loss of function resulted from a reduction of protein abundance, with no alterations in transcript levels and trafficking to the cell surface. Importantly, melatonin reverted these changes. All findings, including the melatonin antioxidant effect, were reproduced in heterologous expression systems. We conclude that the glial Kir2.1 can be a target of oxidative stress and further suggest that inhibition of its function might alter the extracellular K<sup>+</sup> buffering in the brain, therefore contributing to neuronal hyperexcitability and epileptogenesis during aging. Melatonin can play a protective role in this context.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biof.2024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.2024","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Melatonin is a pleiotropic biofactor and an effective antioxidant and free radical scavenger and, as such, can be protective in oxidative stress-related brain conditions including epilepsy and aging. To test the potential protective effect of melatonin on brain homeostasis and identify the corresponding molecular targets, we established a new model of oxidative stress-related aging neuroglia represented by U-87 MG cells exposed to D-galactose (D-Gal). This model was characterized by a substantial elevation of markers of oxidative stress, lipid peroxidation, and protein oxidation. The function of the inward rectifying K+ channel Kir2.1, which was identified as the main Kir channel endogenously expressed in these cells, was dramatically impaired. Kir2.1 was unlikely a direct target of oxidative stress, but the loss of function resulted from a reduction of protein abundance, with no alterations in transcript levels and trafficking to the cell surface. Importantly, melatonin reverted these changes. All findings, including the melatonin antioxidant effect, were reproduced in heterologous expression systems. We conclude that the glial Kir2.1 can be a target of oxidative stress and further suggest that inhibition of its function might alter the extracellular K+ buffering in the brain, therefore contributing to neuronal hyperexcitability and epileptogenesis during aging. Melatonin can play a protective role in this context.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.