Structured model selection via ℓ1−ℓ2 optimization

IF 2 2区 数学 Q1 MATHEMATICS, APPLIED Inverse Problems Pub Date : 2023-12-11 DOI:10.1088/1361-6420/ad0fad
Xiaofan Lu, Linan Zhang, Hongjin He
{"title":"Structured model selection via ℓ1−ℓ2 optimization","authors":"Xiaofan Lu, Linan Zhang, Hongjin He","doi":"10.1088/1361-6420/ad0fad","DOIUrl":null,"url":null,"abstract":"Automated model selection is an important application in science and engineering. In this work, we develop a learning approach for identifying structured dynamical systems from undersampled and noisy spatiotemporal data. The learning is performed by a sparse least-squares fitting over a large set of candidate functions via a nonconvex <inline-formula>\n<tex-math><?CDATA $\\ell_1-\\ell_2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>−</mml:mo><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>\n<inline-graphic xlink:href=\"ipad0fadieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> sparse optimization solved by the alternating direction method of multipliers. We show that if the set of candidate functions forms a structured random sampling matrix of a bounded orthogonal system, the recovery is stable and the error is bounded. The learning approach is validated on synthetic data generated by the viscous Burgers’ equation and two reaction–diffusion equations. The computational results demonstrate the theoretical guarantees of success and the efficiency with respect to the number of candidate functions.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"24 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad0fad","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Automated model selection is an important application in science and engineering. In this work, we develop a learning approach for identifying structured dynamical systems from undersampled and noisy spatiotemporal data. The learning is performed by a sparse least-squares fitting over a large set of candidate functions via a nonconvex 12 sparse optimization solved by the alternating direction method of multipliers. We show that if the set of candidate functions forms a structured random sampling matrix of a bounded orthogonal system, the recovery is stable and the error is bounded. The learning approach is validated on synthetic data generated by the viscous Burgers’ equation and two reaction–diffusion equations. The computational results demonstrate the theoretical guarantees of success and the efficiency with respect to the number of candidate functions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 ℓ1-ℓ2 优化进行结构化模型选择
自动模型选择是科学和工程领域的一项重要应用。在这项工作中,我们开发了一种学习方法,用于从采样不足和噪声较大的时空数据中识别结构化动力系统。学习是通过对大量候选函数集进行稀疏最小二乘拟合来完成的,该拟合是通过非凸 ℓ1-ℓ2 稀疏优化法进行的,该优化法由乘数交替方向法求解。我们证明,如果候选函数集构成了有界正交系统的结构化随机抽样矩阵,则恢复是稳定的,误差也是有界的。学习方法在粘性布尔格斯方程和两个反应扩散方程生成的合成数据上得到了验证。计算结果证明了理论上的成功保证以及与候选函数数量相关的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inverse Problems
Inverse Problems 数学-物理:数学物理
CiteScore
4.40
自引率
14.30%
发文量
115
审稿时长
2.3 months
期刊介绍: An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution. As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others. The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.
期刊最新文献
Optimizing quantitative photoacoustic imaging systems: the Bayesian Cramér-Rao bound approach. Linearized boundary control method for density reconstruction in acoustic wave equations. A microlocal and visual comparison of 2D Kirchhoff migration formulas in seismic imaging * A bilevel optimization method for inverse mean-field games * Lipschitz stability of an inverse conductivity problem with two Cauchy data pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1