Closed-loop recycling of semi-aromatic polyesters upcycled from poly(ethylene terephthalate)

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2023-12-13 DOI:10.1016/j.xcrp.2023.101734
Jeffrey C. Foster, Jackie Zheng, Md Arifuzzaman, Md Anisur Rahman, Joshua T. Damron, Chao Guan, Ilja Popovs, Nick Galan, Zoriana Demchuk, Tomonori Saito
{"title":"Closed-loop recycling of semi-aromatic polyesters upcycled from poly(ethylene terephthalate)","authors":"Jeffrey C. Foster, Jackie Zheng, Md Arifuzzaman, Md Anisur Rahman, Joshua T. Damron, Chao Guan, Ilja Popovs, Nick Galan, Zoriana Demchuk, Tomonori Saito","doi":"10.1016/j.xcrp.2023.101734","DOIUrl":null,"url":null,"abstract":"<p>Plastics are critical in facilitating the comfort and quality of everyday life. Most plastics are discarded after a single use, wasting the energy and carbon consumed for their production and incurring environmental costs. Thus, closed-loop production and recycling processes are needed to mitigate energy and carbon loss toward a net-zero carbon economy. Here, we show that poly(ethylene terephthalate) (PET) can be efficiently deconstructed into small-molecule α,ω-dialkenenyl terephthalates using organocatalyzed transesterification. The resulting compounds can be polymerized by acyclic diene metathesis (ADMET) polymerization, affording unsaturated semi-aromatic polyesters with thermomechanical properties dependent on the monomer structure and the catalyst used for their synthesis. High-molecular-weight ADMET polymers form free-standing films that are ductile and tough with mechanical properties similar to widely used commodity plastics. Crucially, the ADMET polymers can be deconstructed to monomers using Retro-ADMET and re-polymerized by ADMET polymerization, establishing closed-loop circularity for a unique class of materials.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"14 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101734","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plastics are critical in facilitating the comfort and quality of everyday life. Most plastics are discarded after a single use, wasting the energy and carbon consumed for their production and incurring environmental costs. Thus, closed-loop production and recycling processes are needed to mitigate energy and carbon loss toward a net-zero carbon economy. Here, we show that poly(ethylene terephthalate) (PET) can be efficiently deconstructed into small-molecule α,ω-dialkenenyl terephthalates using organocatalyzed transesterification. The resulting compounds can be polymerized by acyclic diene metathesis (ADMET) polymerization, affording unsaturated semi-aromatic polyesters with thermomechanical properties dependent on the monomer structure and the catalyst used for their synthesis. High-molecular-weight ADMET polymers form free-standing films that are ductile and tough with mechanical properties similar to widely used commodity plastics. Crucially, the ADMET polymers can be deconstructed to monomers using Retro-ADMET and re-polymerized by ADMET polymerization, establishing closed-loop circularity for a unique class of materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从聚对苯二甲酸乙二酯升级回收的半芳香族聚酯的闭环再循环
塑料对提高日常生活的舒适度和质量至关重要。大多数塑料在使用一次后就被丢弃,浪费了生产过程中消耗的能源和碳,并造成环境成本。因此,需要采用闭环生产和回收工艺来减少能源和碳的损失,从而实现净零碳经济。在此,我们展示了聚对苯二甲酸乙二醇酯(PET)可通过有机催化的酯交换反应有效地解构为小分子α,ω-二烯基对苯二甲酸乙二醇酯。由此产生的化合物可通过无环二烯偏聚(ADMET)聚合反应进行聚合,从而得到不饱和半芳香族聚酯,其热机械性能取决于单体结构和用于合成的催化剂。高分子量 ADMET 聚合物形成的独立薄膜具有延展性和韧性,其机械性能与广泛使用的商品塑料相似。最重要的是,ADMET 聚合物可以使用 Retro-ADMET 分解为单体,并通过 ADMET 聚合作用重新聚合,从而为一类独特的材料建立了闭环循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Amino acid-dependent phase equilibrium and material properties of tetrapeptide condensates. Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1