Federated Learning for Wireless Applications: A Prototype

Varun Laxman Muttepawar, Arjun Mehra, Zubair Shaban, Ranjitha Prasad, Harshan Jagadeesh
{"title":"Federated Learning for Wireless Applications: A Prototype","authors":"Varun Laxman Muttepawar, Arjun Mehra, Zubair Shaban, Ranjitha Prasad, Harshan Jagadeesh","doi":"arxiv-2312.08577","DOIUrl":null,"url":null,"abstract":"Wireless embedded edge devices are ubiquitous in our daily lives, enabling\nthem to gather immense data via onboard sensors and mobile applications. This\noffers an amazing opportunity to train machine learning (ML) models in the\nrealm of wireless devices for decision-making. Training ML models in a wireless\nsetting necessitates transmitting datasets collected at the edge to a cloud\nparameter server, which is infeasible due to bandwidth constraints, security,\nand privacy issues. To tackle these challenges, Federated Learning (FL) has\nemerged as a distributed optimization approach to the decentralization of the\nmodel training process. In this work, we present a novel prototype to examine\nFL's effectiveness over bandwidth-constrained wireless channels. Through a\nnovel design consisting of Zigbee and NI USRP devices, we propose a\nconfiguration that allows clients to broadcast synergistically local ML model\nupdates to a central server to obtain a generalized global model. We assess the\nefficacy of this prototype using metrics such as global model accuracy and time\ncomplexity under varying conditions of transmission power, data heterogeneity\nand local learning.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.08577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless embedded edge devices are ubiquitous in our daily lives, enabling them to gather immense data via onboard sensors and mobile applications. This offers an amazing opportunity to train machine learning (ML) models in the realm of wireless devices for decision-making. Training ML models in a wireless setting necessitates transmitting datasets collected at the edge to a cloud parameter server, which is infeasible due to bandwidth constraints, security, and privacy issues. To tackle these challenges, Federated Learning (FL) has emerged as a distributed optimization approach to the decentralization of the model training process. In this work, we present a novel prototype to examine FL's effectiveness over bandwidth-constrained wireless channels. Through a novel design consisting of Zigbee and NI USRP devices, we propose a configuration that allows clients to broadcast synergistically local ML model updates to a central server to obtain a generalized global model. We assess the efficacy of this prototype using metrics such as global model accuracy and time complexity under varying conditions of transmission power, data heterogeneity and local learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线应用的联合学习:原型
无线嵌入式边缘设备在我们的日常生活中无处不在,使它们能够通过板载传感器和移动应用程序收集大量数据。这为在无线设备中训练机器学习(ML)模型以进行决策提供了绝佳的机会。在无线环境中训练 ML 模型需要将在边缘收集的数据集传输到云参数服务器,但由于带宽限制、安全和隐私问题,这种做法并不可行。为了应对这些挑战,联邦学习(FL)作为一种分布式优化方法应运而生,它可以实现模型训练过程的去中心化。在这项工作中,我们提出了一个新颖的原型,以检验联邦学习在带宽受限的无线信道中的有效性。通过一个由 Zigbee 和 NI USRP 设备组成的新颖设计,我们提出了一种配置,允许客户端向中央服务器协同广播本地 ML 模型更新,从而获得一个广义的全局模型。我们在不同的传输功率、数据异构性和本地学习条件下,使用全局模型准确性和时间复杂性等指标来评估该原型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1