From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation

Claire Augusta Bergey, Simon DeDeo
{"title":"From \"um\" to \"yeah\": Producing, predicting, and regulating information flow in human conversation","authors":"Claire Augusta Bergey, Simon DeDeo","doi":"arxiv-2403.08890","DOIUrl":null,"url":null,"abstract":"Conversation demands attention. Speakers must call words to mind, listeners\nmust make sense of them, and both together must negotiate this flow of\ninformation, all in fractions of a second. We used large language models to\nstudy how this works in a large-scale dataset of English-language conversation,\nthe CANDOR corpus. We provide a new estimate of the information density of\nunstructured conversation, of approximately 13 bits/second, and find\nsignificant effects associated with the cognitive load of both retrieving, and\npresenting, that information. We also reveal a role for backchannels -- the\nbrief yeahs, uh-huhs, and mhmms that listeners provide -- in regulating the\nproduction of novelty: the lead-up to a backchannel is associated with\ndeclining information rate, while speech downstream rebounds to previous rates.\nOur results provide new insights into long-standing theories of how we respond\nto fluctuating demands on cognitive resources, and how we negotiate those\ndemands in partnership with others.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.08890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conversation demands attention. Speakers must call words to mind, listeners must make sense of them, and both together must negotiate this flow of information, all in fractions of a second. We used large language models to study how this works in a large-scale dataset of English-language conversation, the CANDOR corpus. We provide a new estimate of the information density of unstructured conversation, of approximately 13 bits/second, and find significant effects associated with the cognitive load of both retrieving, and presenting, that information. We also reveal a role for backchannels -- the brief yeahs, uh-huhs, and mhmms that listeners provide -- in regulating the production of novelty: the lead-up to a backchannel is associated with declining information rate, while speech downstream rebounds to previous rates. Our results provide new insights into long-standing theories of how we respond to fluctuating demands on cognitive resources, and how we negotiate those demands in partnership with others.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从 "嗯 "到 "是":人类对话中信息流的产生、预测和调节
对话需要注意力。说话者必须把单词记在脑子里,听话者必须理解这些单词,而且双方必须在几分之一秒的时间内共同协商信息流。我们使用大型语言模型,在大规模英语会话数据集(CANDOR 语料库)中研究了这一过程是如何进行的。我们对结构化会话的信息密度进行了新的估算,大约为 13 比特/秒,并发现了与检索和呈现这些信息的认知负荷相关的显著效果。我们还揭示了后信道--听者提供的简短的 "是"、"嗯 "和 "嗯"--在调节新奇感产生中的作用:后信道的前奏与信息速率下降有关,而下游语音则会回升到以前的速率。我们的研究结果为我们如何应对认知资源的波动需求,以及我们如何与他人合作协商这些需求的长期理论提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1