Numerical analysis and validation of an optical parametric oscillator considering crystal thermal effects

IF 1.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Frontiers in Physics Pub Date : 2023-12-15 DOI:10.3389/fphy.2023.1333036
Rui Wang, Shuilan Wang, Jiacheng Tan, Yeqiu Li, Qin Dai
{"title":"Numerical analysis and validation of an optical parametric oscillator considering crystal thermal effects","authors":"Rui Wang, Shuilan Wang, Jiacheng Tan, Yeqiu Li, Qin Dai","doi":"10.3389/fphy.2023.1333036","DOIUrl":null,"url":null,"abstract":"In this paper, a calculation model is proposed for the optical parametric oscillation (OPO) process considering the crystal thermal effects. Based on existing models, we combine a set of three-wave coupled equations with the Sellmeier equation. In order to optimize the calculation of the nonlinear process, a temperature variable t is introduced to describe the heat generated by the laser crystal during operation. The waveforms under different pump powers are analyzed. The effects of the reflectivity of the output mirror on the OPO threshold and inverse conversion are investigated. In addition, the optimal reflectivity under different pump powers can be estimated. Based on the simulation results, experiments are also performed in the near-infrared 1.57 µm band and mid-infrared 3.15 µm band. The experimental results are compared with the results of this model and a model that does not consider crystal thermal effects. The experimental results are consistent with the improved theoretical results, affirming that the proposed theoretical model can simulate the energy conversion process of OPO. This provides a theoretical basis for optimizing the parameters of the OPO output mirror and improving the efficiency of the parametric wave conversion.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":"2 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2023.1333036","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a calculation model is proposed for the optical parametric oscillation (OPO) process considering the crystal thermal effects. Based on existing models, we combine a set of three-wave coupled equations with the Sellmeier equation. In order to optimize the calculation of the nonlinear process, a temperature variable t is introduced to describe the heat generated by the laser crystal during operation. The waveforms under different pump powers are analyzed. The effects of the reflectivity of the output mirror on the OPO threshold and inverse conversion are investigated. In addition, the optimal reflectivity under different pump powers can be estimated. Based on the simulation results, experiments are also performed in the near-infrared 1.57 µm band and mid-infrared 3.15 µm band. The experimental results are compared with the results of this model and a model that does not consider crystal thermal effects. The experimental results are consistent with the improved theoretical results, affirming that the proposed theoretical model can simulate the energy conversion process of OPO. This provides a theoretical basis for optimizing the parameters of the OPO output mirror and improving the efficiency of the parametric wave conversion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑晶体热效应的光学参量振荡器的数值分析与验证
本文提出了一种考虑晶体热效应的光学参量振荡(OPO)过程计算模型。在现有模型的基础上,我们将一组三波耦合方程与 Sellmeier 方程相结合。为了优化非线性过程的计算,我们引入了温度变量 t 来描述激光晶体在工作过程中产生的热量。分析了不同泵浦功率下的波形。研究了输出镜反射率对 OPO 门限和反向转换的影响。此外,还可以估算出不同泵浦功率下的最佳反射率。根据模拟结果,还在近红外 1.57 µm 波段和中红外 3.15 µm 波段进行了实验。实验结果与该模型和不考虑晶体热效应的模型的结果进行了比较。实验结果与改进后的理论结果一致,证明所提出的理论模型可以模拟 OPO 的能量转换过程。这为优化 OPO 输出镜的参数和提高参量波转换效率提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Physics
Frontiers in Physics Mathematics-Mathematical Physics
CiteScore
4.50
自引率
6.50%
发文量
1215
审稿时长
12 weeks
期刊介绍: Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.
期刊最新文献
Intelligent diagnostic method for developmental hip dislocation Bonner sphere measurements of high-energy neutron spectra from a 1 GeV/u 56Fe ion beam on an aluminum target and comparison to spectra obtained by Monte Carlo simulations Comparative analysis of the influence of different shapes of shaft sections on dust transportation Detection of natural pulse waves (PWs) in 3D using high frame rate imaging for anisotropy characterization Tunable continuous wave Yb:CaWO4 laser operating in NIR spectral region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1