F.P. de Isidro-Gómez , J.L. Vilas , P. Losana , J.M. Carazo , C.O.S. Sorzano
{"title":"A deep learning approach to the automatic detection of alignment errors in cryo-electron tomographic reconstructions","authors":"F.P. de Isidro-Gómez , J.L. Vilas , P. Losana , J.M. Carazo , C.O.S. Sorzano","doi":"10.1016/j.jsb.2023.108056","DOIUrl":null,"url":null,"abstract":"<div><p>Electron tomography is an imaging technique that allows for the elucidation of three-dimensional structural information of biological specimens in a very general context, including cellular <em>in situ</em> observations. The approach starts by collecting a set of images at different projection directions by tilting the specimen stage inside the microscope. Therefore, a crucial preliminary step is to precisely define the acquisition geometry by aligning all the tilt images to a common reference. Errors introduced in this step will lead to the appearance of artifacts in the tomographic reconstruction, rendering them unsuitable for the sample study. Focusing on fiducial-based acquisition strategies, this work proposes a deep-learning algorithm to detect misalignment artifacts in tomographic reconstructions by analyzing the characteristics of these fiducial markers in the tomogram. In addition, we propose an algorithm designed to detect fiducial markers in the tomogram with which to feed the classification algorithm in case the alignment algorithm does not provide the location of the markers. This open-source software is available as part of the Xmipp software package inside of the Scipion framework, and also through the command-line in the standalone version of Xmipp.</p></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1047847723001193/pdfft?md5=2c6e8f0cde89102d24752cf1b627b980&pid=1-s2.0-S1047847723001193-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847723001193","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Electron tomography is an imaging technique that allows for the elucidation of three-dimensional structural information of biological specimens in a very general context, including cellular in situ observations. The approach starts by collecting a set of images at different projection directions by tilting the specimen stage inside the microscope. Therefore, a crucial preliminary step is to precisely define the acquisition geometry by aligning all the tilt images to a common reference. Errors introduced in this step will lead to the appearance of artifacts in the tomographic reconstruction, rendering them unsuitable for the sample study. Focusing on fiducial-based acquisition strategies, this work proposes a deep-learning algorithm to detect misalignment artifacts in tomographic reconstructions by analyzing the characteristics of these fiducial markers in the tomogram. In addition, we propose an algorithm designed to detect fiducial markers in the tomogram with which to feed the classification algorithm in case the alignment algorithm does not provide the location of the markers. This open-source software is available as part of the Xmipp software package inside of the Scipion framework, and also through the command-line in the standalone version of Xmipp.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure