Cryo-iCLEM: Cryo correlative light and electron microscopy with immersion objectives.

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of structural biology Pub Date : 2025-02-17 DOI:10.1016/j.jsb.2025.108179
Niko Faul, Shih-Ya Chen, Christian Lamberz, Mark Bruckner, Christian Dienemann, Thomas P Burg
{"title":"Cryo-iCLEM: Cryo correlative light and electron microscopy with immersion objectives.","authors":"Niko Faul, Shih-Ya Chen, Christian Lamberz, Mark Bruckner, Christian Dienemann, Thomas P Burg","doi":"10.1016/j.jsb.2025.108179","DOIUrl":null,"url":null,"abstract":"<p><p>Correlative light and electron microscopy (CLEM) is a powerful tool for investigating cellular structure and function at the molecular level. However, while electron microscopy is often performed to great advantage at cryogenic temperatures, this is not always the case for light microscopy. One key challenge is the lack of cryo-compatible immersion objectives. In recent years, multiple cryoimmersion light microscopy (cryo-iLM) approaches have been described, but these techniques have never been used in correlative approaches. Here we present a novel workflow for correlative cryoimmersion light microscopy and electron cryomicroscopy (cryo-iCLEM). Cryo-electron tomography conducted before and after cryo-iLM reveals that cryo-iCLEM maintains ultra-thin, electron-transparent samples mechanically intact and does not degrade the ultrastructural preservation achieved through plunge-freezing. For cryo-iLM, the sample is first embedded in a viscous immersion medium at cryogenic temperatures and examined with a custom cryo-immersion objective. After cryo-iLM, the immersion medium is dissolved in liquid ethane, allowing for subsequent cryo-EM imaging. We further show that cryo-iCLEM can be used on FIB-lamellae, demonstrating that mechanically sensitive samples remain undamaged. Embedding the sample in the immersion fluid reduces contamination and thus allows data acquisition over many hours. Samples can therefore be examined in detail with the advantage of low bleaching rates of fluorophores at cryogenic temperatures. In the future, we hope that our approach can help improve the performance of many advanced light microscopy techniques when they are applied in the context of cryo-CLEM.</p>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":" ","pages":"108179"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jsb.2025.108179","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Correlative light and electron microscopy (CLEM) is a powerful tool for investigating cellular structure and function at the molecular level. However, while electron microscopy is often performed to great advantage at cryogenic temperatures, this is not always the case for light microscopy. One key challenge is the lack of cryo-compatible immersion objectives. In recent years, multiple cryoimmersion light microscopy (cryo-iLM) approaches have been described, but these techniques have never been used in correlative approaches. Here we present a novel workflow for correlative cryoimmersion light microscopy and electron cryomicroscopy (cryo-iCLEM). Cryo-electron tomography conducted before and after cryo-iLM reveals that cryo-iCLEM maintains ultra-thin, electron-transparent samples mechanically intact and does not degrade the ultrastructural preservation achieved through plunge-freezing. For cryo-iLM, the sample is first embedded in a viscous immersion medium at cryogenic temperatures and examined with a custom cryo-immersion objective. After cryo-iLM, the immersion medium is dissolved in liquid ethane, allowing for subsequent cryo-EM imaging. We further show that cryo-iCLEM can be used on FIB-lamellae, demonstrating that mechanically sensitive samples remain undamaged. Embedding the sample in the immersion fluid reduces contamination and thus allows data acquisition over many hours. Samples can therefore be examined in detail with the advantage of low bleaching rates of fluorophores at cryogenic temperatures. In the future, we hope that our approach can help improve the performance of many advanced light microscopy techniques when they are applied in the context of cryo-CLEM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of structural biology
Journal of structural biology 生物-生化与分子生物学
CiteScore
6.30
自引率
3.30%
发文量
88
审稿时长
65 days
期刊介绍: Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure. Techniques covered include: • Light microscopy including confocal microscopy • All types of electron microscopy • X-ray diffraction • Nuclear magnetic resonance • Scanning force microscopy, scanning probe microscopy, and tunneling microscopy • Digital image processing • Computational insights into structure
期刊最新文献
Computational Engineering of siderocalin to modulate its binding affinity to the antihypertension drug candesartan. Cryo-iCLEM: Cryo correlative light and electron microscopy with immersion objectives. Lack of embryonic skeletal muscle in mice leads to abnormal mineral deposition and growth. Computational identification of B and T-cell epitopes for designing a multi-epitope vaccine against SARS-CoV-2 spike glycoprotein. A computational approach to predict the effects of missense mutations on protein amyloidogenicity: A case study in hereditary transthyretin cardiomyopathy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1