{"title":"Intersecting and dense restrictions of clutters in polynomial time","authors":"Martin Drees","doi":"10.1007/s10107-023-02034-3","DOIUrl":null,"url":null,"abstract":"<p>A clutter is a family of sets, called members, such that no member contains another. It is called intersecting if every two members intersect, but not all members have a common element. Dense clutters additionally do not have a fractional packing of value 2. We are looking at certain substructures of clutters, namely minors and restrictions. For a family of clutters we introduce a general sufficient condition such that for every clutter we can decide whether the clutter has a restriction in that set in polynomial time. It is known that the sets of intersecting and dense clutters satisfy this condition. For intersecting clutters we generalize the statement to <i>k</i>-wise intersecting clutters using a much simpler proof. We also give a simplified proof that a dense clutter with no proper dense minor is either a delta or the blocker of an extended odd hole. This simplification reduces the running time of the algorithm for finding a delta or the blocker of an extended odd hole minor from previously <span>\\({\\mathscr {O}}(n^4)\\)</span> to <span>\\({\\mathscr {O}}(n^3)\\)</span> filter oracle calls.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"20 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-023-02034-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A clutter is a family of sets, called members, such that no member contains another. It is called intersecting if every two members intersect, but not all members have a common element. Dense clutters additionally do not have a fractional packing of value 2. We are looking at certain substructures of clutters, namely minors and restrictions. For a family of clutters we introduce a general sufficient condition such that for every clutter we can decide whether the clutter has a restriction in that set in polynomial time. It is known that the sets of intersecting and dense clutters satisfy this condition. For intersecting clutters we generalize the statement to k-wise intersecting clutters using a much simpler proof. We also give a simplified proof that a dense clutter with no proper dense minor is either a delta or the blocker of an extended odd hole. This simplification reduces the running time of the algorithm for finding a delta or the blocker of an extended odd hole minor from previously \({\mathscr {O}}(n^4)\) to \({\mathscr {O}}(n^3)\) filter oracle calls.
期刊介绍:
Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.