A nearly optimal randomized algorithm for explorable heap selection.

IF 2.2 2区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Mathematical Programming Pub Date : 2025-01-01 Epub Date: 2024-11-05 DOI:10.1007/s10107-024-02145-5
Sander Borst, Daniel Dadush, Sophie Huiberts, Danish Kashaev
{"title":"A nearly optimal randomized algorithm for explorable heap selection.","authors":"Sander Borst, Daniel Dadush, Sophie Huiberts, Danish Kashaev","doi":"10.1007/s10107-024-02145-5","DOIUrl":null,"url":null,"abstract":"<p><p>Explorable heap selection is the problem of selecting the <i>n</i>th smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS '86), who gave deterministic and randomized <math><mrow><mi>n</mi> <mo>·</mo> <mo>exp</mo> <mo>(</mo> <mi>O</mi> <mrow><mo>(</mo> <msqrt><mrow><mo>log</mo> <mi>n</mi></mrow> </msqrt> <mo>)</mo></mrow> <mo>)</mo></mrow> </math> time algorithms using <math><mrow><mi>O</mi> <mo>(</mo> <mo>log</mo> <msup><mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> <mrow><mn>2.5</mn></mrow> </msup> <mo>)</mo></mrow> </math> and <math><mrow><mi>O</mi> <mo>(</mo> <msqrt><mrow><mo>log</mo> <mi>n</mi></mrow> </msqrt> <mo>)</mo></mrow> </math> space respectively. We present a new randomized algorithm with running time <math><mrow><mi>O</mi> <mo>(</mo> <mi>n</mi> <mo>log</mo> <msup><mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> <mn>3</mn></msup> <mo>)</mo></mrow> </math> against an oblivious adversary using <math><mrow><mi>O</mi> <mo>(</mo> <mo>log</mo> <mi>n</mi> <mo>)</mo></mrow> </math> space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an <math><mrow><mi>Ω</mi> <mo>(</mo> <mo>log</mo> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mi>n</mi> <mo>/</mo> <mo>log</mo> <mo>(</mo> <mo>log</mo> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>)</mo> <mo>)</mo></mrow> </math> lower bound for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"210 1-2","pages":"75-96"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870923/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02145-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Explorable heap selection is the problem of selecting the nth smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS '86), who gave deterministic and randomized n · exp ( O ( log n ) ) time algorithms using O ( log ( n ) 2.5 ) and O ( log n ) space respectively. We present a new randomized algorithm with running time O ( n log ( n ) 3 ) against an oblivious adversary using O ( log n ) space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an Ω ( log ( n ) n / log ( log ( n ) ) ) lower bound for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可探索堆选择是在二进制堆中选择第 n 个最小值的问题。关键值只能通过遍历底层的无限二叉树来获取,算法的复杂度由在树中所走的总距离来衡量(每条边都有单位成本)。这个问题最初是由 Karp、Saks 和 Widgerson(FOCS '86)作为研究有存储限制的分支与边界算法搜索策略的模型提出的,他们分别给出了使用 O ( log ( n ) 2.5 ) 和 O ( log n ) 空间的确定性和随机 n - exp ( O ( log n ) ) 时间算法。我们提出了一种新的随机算法,其针对遗忘对手的运行时间为 O ( n log ( n ) 3 ),使用空间为 O ( log n ),大大改进了之前的最佳随机运行时间,但使用空间略有增加。我们还展示了 Ω ( log ( n ) n / log ( log ( n ) )) 的下限,表明我们的算法接近最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Programming
Mathematical Programming 数学-计算机:软件工程
CiteScore
5.70
自引率
11.10%
发文量
160
审稿时长
4-8 weeks
期刊介绍: Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.
期刊最新文献
Advances on strictly Δ -modular IPs. A nearly optimal randomized algorithm for explorable heap selection. Constant-competitiveness for random assignment Matroid secretary without knowing the Matroid. Did smallpox cause stillbirths? Maternal smallpox infection, vaccination, and stillbirths in Sweden, 1780-1839. Fast convergence to non-isolated minima: four equivalent conditions for $${\textrm{C}^{2}}$$ functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1