Qiuwen Chen, Qinyuan Li, Yuqing Lin, Jianyun Zhang, Jun Xia, Jinren Ni, Steven J. Cooke, Jim Best, Shufeng He, Tao Feng, Yuchen Chen, Daniele Tonina, Rohan Benjankar, Sebastian Birk, Ayan Santos Fleischmann, Hanlu Yan, Lei Tang
{"title":"River Damming Impacts on Fish Habitat and Associated Conservation Measures","authors":"Qiuwen Chen, Qinyuan Li, Yuqing Lin, Jianyun Zhang, Jun Xia, Jinren Ni, Steven J. Cooke, Jim Best, Shufeng He, Tao Feng, Yuchen Chen, Daniele Tonina, Rohan Benjankar, Sebastian Birk, Ayan Santos Fleischmann, Hanlu Yan, Lei Tang","doi":"10.1029/2023RG000819","DOIUrl":null,"url":null,"abstract":"<p>River damming has brought great benefits to flood mitigation, energy and food production, and will continue to play a significant role in global energy supply, particularly in Asia, Africa, and South America. However, dams have extensively altered global river dynamics, including riverine connectivity, hydrological, thermal, sediment and solute regimes, and the channel morphology. These alterations have detrimental effects on the quality and quantity of fish habitat and associated impacts on aquatic life. Indeed, dams have been implicated in the decline of numerous fishes, emphasizing the need for effective conservation measures. Here, we present a global synthesis of critical issues concerning the impacts of river damming on physical fish habitats, with a particular focus on key fish species across continents. We also consider current fish conservation measures and their applicability in different contexts. Finally, we identify future research needs. The information presented herein will help support sustainable dam operation under the constraints of future climate change and human needs.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":null,"pages":null},"PeriodicalIF":25.2000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000819","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023RG000819","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
River damming has brought great benefits to flood mitigation, energy and food production, and will continue to play a significant role in global energy supply, particularly in Asia, Africa, and South America. However, dams have extensively altered global river dynamics, including riverine connectivity, hydrological, thermal, sediment and solute regimes, and the channel morphology. These alterations have detrimental effects on the quality and quantity of fish habitat and associated impacts on aquatic life. Indeed, dams have been implicated in the decline of numerous fishes, emphasizing the need for effective conservation measures. Here, we present a global synthesis of critical issues concerning the impacts of river damming on physical fish habitats, with a particular focus on key fish species across continents. We also consider current fish conservation measures and their applicability in different contexts. Finally, we identify future research needs. The information presented herein will help support sustainable dam operation under the constraints of future climate change and human needs.
期刊介绍:
Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.