H. Nisbet, G. Buscarnera, J. W. Carey, M. A. Chen, E. Detournay, H. Huang, J. D. Hyman, P. K. Kang, Q. Kang, J. F. Labuz, W. Li, J. Matter, C. W. Neil, G. Srinivasan, M. R. Sweeney, V. R. Voller, W. Yang, Y. Yang, H. S. Viswanathan
Mineral carbon storage in mafic and ultramafic rock masses has the potential to be an effective and permanent mechanism to reduce anthropogenic CO2. Several successful pilot-scale projects have been carried out in basaltic rock (e.g., CarbFix, Wallula), demonstrating the potential for rapid CO2 sequestration. However, these tests have been limited to the injection of small quantities of CO2. Thus, the longevity and feasibility of long-term, large-scale mineralization operations to store the levels of CO2 needed to address the present climate crisis is unknown. Moreover, CO2 mineralization in ultramafic rocks, which tend to be more reactive but less permeable, has not yet been quantified. In these systems, fractures are expected to play a crucial role in the flow and reaction of CO2 within the rock mass and will influence the CO2 storage potential of the system. Therefore, consideration of fractures is imperative to the prediction of CO2 mineralization at a specific storage site. In this review, we highlight key takeaways, successes, and shortcomings of CO2 mineralization pilot tests that have been completed and are currently underway. Laboratory experiments, directed toward understanding the complex geochemical and geomechanical reactions that occur during CO2 mineralization in fractures, are also discussed. Experimental studies and their applicability to field sites are limited in time and scale. Many modeling techniques can be applied to bridge these limitations. We highlight current modeling advances and their potential applications for predicting CO2 mineralization in mafic and ultramafic rocks.
{"title":"Carbon Mineralization in Fractured Mafic and Ultramafic Rocks: A Review","authors":"H. Nisbet, G. Buscarnera, J. W. Carey, M. A. Chen, E. Detournay, H. Huang, J. D. Hyman, P. K. Kang, Q. Kang, J. F. Labuz, W. Li, J. Matter, C. W. Neil, G. Srinivasan, M. R. Sweeney, V. R. Voller, W. Yang, Y. Yang, H. S. Viswanathan","doi":"10.1029/2023RG000815","DOIUrl":"10.1029/2023RG000815","url":null,"abstract":"<p>Mineral carbon storage in mafic and ultramafic rock masses has the potential to be an effective and permanent mechanism to reduce anthropogenic CO<sub>2</sub>. Several successful pilot-scale projects have been carried out in basaltic rock (e.g., CarbFix, Wallula), demonstrating the potential for rapid CO<sub>2</sub> sequestration. However, these tests have been limited to the injection of small quantities of CO<sub>2</sub>. Thus, the longevity and feasibility of long-term, large-scale mineralization operations to store the levels of CO<sub>2</sub> needed to address the present climate crisis is unknown. Moreover, CO<sub>2</sub> mineralization in ultramafic rocks, which tend to be more reactive but less permeable, has not yet been quantified. In these systems, fractures are expected to play a crucial role in the flow and reaction of CO<sub>2</sub> within the rock mass and will influence the CO<sub>2</sub> storage potential of the system. Therefore, consideration of fractures is imperative to the prediction of CO<sub>2</sub> mineralization at a specific storage site. In this review, we highlight key takeaways, successes, and shortcomings of CO<sub>2</sub> mineralization pilot tests that have been completed and are currently underway. Laboratory experiments, directed toward understanding the complex geochemical and geomechanical reactions that occur during CO<sub>2</sub> mineralization in fractures, are also discussed. Experimental studies and their applicability to field sites are limited in time and scale. Many modeling techniques can be applied to bridge these limitations. We highlight current modeling advances and their potential applications for predicting CO<sub>2</sub> mineralization in mafic and ultramafic rocks.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"62 4","pages":""},"PeriodicalIF":25.2,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000815","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laurie S. Huning, Charlotte A. Love, Hassan Anjileli, Farshid Vahedifard, Yunxia Zhao, Pedro L. B. Chaffe, Kevin Cooper, Aneseh Alborzi, Edward Pleitez, Alexandre Martinez, Samaneh Ashraf, Iman Mallakpour, Hamed Moftakhari, Amir AghaKouchak
Globally, land subsidence (LS) often adversely impacts infrastructure, humans, and the environment. As climate change intensifies the terrestrial hydrologic cycle and severity of climate extremes, the interplay among extremes (e.g., floods, droughts, wildfires, etc.), LS, and their effects must be better understood since LS can alter the impacts of extreme events, and extreme events can drive LS. Furthermore, several processes causing subsidence (e.g., ice-rich permafrost degradation, oxidation of organic matter) have been shown to also release greenhouse gases, accelerating climate change. Our review aims to synthesize these complex relationships, including human activities contributing to LS, and to identify the causes and rates of subsidence across diverse landscapes. We primarily focus on the era of synthetic aperture radar (SAR), which has significantly contributed to advancements in our understanding of ground deformations around the world. Ultimately, we identify gaps and opportunities to aid LS monitoring, mitigation, and adaptation strategies and guide interdisciplinary efforts to further our process-based understanding of subsidence and associated climate feedbacks. We highlight the need to incorporate the interplay of extreme events, LS, and human activities into models, risk and vulnerability assessments, and management practices to develop improved mitigation and adaptation strategies as the global climate warms. Without consideration of such interplay and/or feedback loops, we may underestimate the enhancement of climate change and acceleration of LS across many regions, leaving communities unprepared for their ramifications. Proactive and interdisciplinary efforts should be leveraged to develop strategies and policies that mitigate or reverse anthropogenic LS and climate change impacts.
在全球范围内,土地沉降(LS)通常会对基础设施、人类和环境造成不利影响。随着气候变化加剧了陆地水文循环和极端气候的严重程度,必须更好地了解极端气候(如洪水、干旱、野火等)、土地沉降及其影响之间的相互作用,因为土地沉降可改变极端事件的影响,而极端事件可推动土地沉降。此外,一些导致沉降的过程(如富含冰的永久冻土降解、有机物氧化)已被证明也会释放温室气体,加速气候变化。我们的综述旨在综合这些复杂的关系,包括导致LS的人类活动,并确定不同地貌沉降的原因和速率。我们主要关注合成孔径雷达(SAR)时代,它极大地促进了我们对世界各地地面变形的理解。最终,我们找出了差距和机遇,以帮助制定通量监测、减缓和适应战略,并指导跨学科工作,进一步加深我们对沉降和相关气候反馈的过程性理解。我们强调,随着全球气候变暖,有必要将极端事件、LS 和人类活动的相互作用纳入模型、风险和脆弱性评估以及管理实践中,以制定更好的减缓和适应战略。如果不考虑这种相互作用和/或反馈回路,我们可能会低估气候变化的加剧和许多地区LS的加速,使社区对其后果毫无准备。应利用积极主动的跨学科努力来制定战略和政策,以减轻或扭转人为 LS 和气候变化的影响。
{"title":"Global Land Subsidence: Impact of Climate Extremes and Human Activities","authors":"Laurie S. Huning, Charlotte A. Love, Hassan Anjileli, Farshid Vahedifard, Yunxia Zhao, Pedro L. B. Chaffe, Kevin Cooper, Aneseh Alborzi, Edward Pleitez, Alexandre Martinez, Samaneh Ashraf, Iman Mallakpour, Hamed Moftakhari, Amir AghaKouchak","doi":"10.1029/2023RG000817","DOIUrl":"10.1029/2023RG000817","url":null,"abstract":"<p>Globally, land subsidence (LS) often adversely impacts infrastructure, humans, and the environment. As climate change intensifies the terrestrial hydrologic cycle and severity of climate extremes, the interplay among extremes (e.g., floods, droughts, wildfires, etc.), LS, and their effects must be better understood since LS can alter the impacts of extreme events, and extreme events can drive LS. Furthermore, several processes causing subsidence (e.g., ice-rich permafrost degradation, oxidation of organic matter) have been shown to also release greenhouse gases, accelerating climate change. Our review aims to synthesize these complex relationships, including human activities contributing to LS, and to identify the causes and rates of subsidence across diverse landscapes. We primarily focus on the era of synthetic aperture radar (SAR), which has significantly contributed to advancements in our understanding of ground deformations around the world. Ultimately, we identify gaps and opportunities to aid LS monitoring, mitigation, and adaptation strategies and guide interdisciplinary efforts to further our process-based understanding of subsidence and associated climate feedbacks. We highlight the need to incorporate the interplay of extreme events, LS, and human activities into models, risk and vulnerability assessments, and management practices to develop improved mitigation and adaptation strategies as the global climate warms. Without consideration of such interplay and/or feedback loops, we may underestimate the enhancement of climate change and acceleration of LS across many regions, leaving communities unprepared for their ramifications. Proactive and interdisciplinary efforts should be leveraged to develop strategies and policies that mitigate or reverse anthropogenic LS and climate change impacts.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"62 4","pages":""},"PeriodicalIF":25.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000817","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}