{"title":"An approach of separating the overlapped cells or nuclei based on the outer Canny edges and morphological erosion","authors":"Wenfei Zhang, Zhenzhou Wang","doi":"10.1002/cyto.a.24819","DOIUrl":null,"url":null,"abstract":"<p>In biomedicine, the automatic processing of medical microscope images plays a key role in the subsequent analysis and diagnosis. Cell or nucleus segmentation is one of the most challenging tasks for microscope image processing. Due to the frequently occurred overlapping, few segmentation methods can achieve satisfactory segmentation accuracy yet. In this paper, we propose an approach to separate the overlapped cells or nuclei based on the outer Canny edges and morphological erosion. The threshold selection is first used to segment the foreground and background of cell or nucleus images. For each binary connected domain in the segmentation image, an intersection based edge selection method is proposed to choose the outer Canny edges of the overlapped cells or nuclei. The outer Canny edges are used to generate a binary cell or nucleus image that is then used to compute the cell or nucleus seeds by the proposed morphological erosion method. The nuclei of the Human U2OS cells, the mouse NIH3T3 cells and the synthetic cells are used for evaluating our proposed approach. The quantitative quantification accuracy is computed by the Dice score and 95.53% is achieved by the proposed approach. Both the quantitative and the qualitative comparisons show that the accuracy of the proposed approach is better than those of the area constrained morphological erosion (ACME) method, the iterative erosion (IE) method, the morphology and watershed (MW) method, the Generalized Laplacian of Gaussian filters (GLGF) method and ellipse fitting (EF) method in separating the cells or nuclei in three publicly available datasets.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"105 4","pages":"266-275"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24819","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In biomedicine, the automatic processing of medical microscope images plays a key role in the subsequent analysis and diagnosis. Cell or nucleus segmentation is one of the most challenging tasks for microscope image processing. Due to the frequently occurred overlapping, few segmentation methods can achieve satisfactory segmentation accuracy yet. In this paper, we propose an approach to separate the overlapped cells or nuclei based on the outer Canny edges and morphological erosion. The threshold selection is first used to segment the foreground and background of cell or nucleus images. For each binary connected domain in the segmentation image, an intersection based edge selection method is proposed to choose the outer Canny edges of the overlapped cells or nuclei. The outer Canny edges are used to generate a binary cell or nucleus image that is then used to compute the cell or nucleus seeds by the proposed morphological erosion method. The nuclei of the Human U2OS cells, the mouse NIH3T3 cells and the synthetic cells are used for evaluating our proposed approach. The quantitative quantification accuracy is computed by the Dice score and 95.53% is achieved by the proposed approach. Both the quantitative and the qualitative comparisons show that the accuracy of the proposed approach is better than those of the area constrained morphological erosion (ACME) method, the iterative erosion (IE) method, the morphology and watershed (MW) method, the Generalized Laplacian of Gaussian filters (GLGF) method and ellipse fitting (EF) method in separating the cells or nuclei in three publicly available datasets.
期刊介绍:
Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques.
The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome:
Biomedical Instrumentation Engineering
Biophotonics
Bioinformatics
Cell Biology
Computational Biology
Data Science
Immunology
Parasitology
Microbiology
Neuroscience
Cancer
Stem Cells
Tissue Regeneration.