首页 > 最新文献

Cytometry Part A最新文献

英文 中文
Imaging Flow Cytometry Detection of Cytogenetic Abnormalities in Circulating CD34+ Cells Predicts Leukemic Transformation in Myelofibrosis. 成像流式细胞术检测循环CD34+细胞的细胞遗传学异常预测骨髓纤维化的白血病转化。
IF 2.1 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-02-03 DOI: 10.1002/cytoa.70012
Ruby M Hamilton, Ryan J Collinson, Henry Y Hui, Zi Yun Ng, Hun S Chuah, Malcolm Webb, Belinda B Guo, Wendy N Erber, Kathy A Fuller

Myelofibrosis is a myeloproliferative neoplasm with potential to transform to acute myeloid leukemia. This evolution is unpredictable and current assays lack the sensitivity and applicability needed to predict this transformation. While population-level data utilizing comprehensive genomic profiling can identify subgroups at higher risk of progression, they do not provide individualized information on the likelihood or timing of leukemia. Cytogenetic alterations are typically present in secondary leukemia. We aimed to determine whether these changes could be detected at an early stage. To achieve this we established and tested a single-cell imaging flow cytometric method for chromosomal aberrations using fluorescence in situ hybridization (FISH) probes to analyze circulating CD34/CD45-positive cells. Peripheral blood samples from 14 patients, collected at up to eight timepoints over a 34-month period, were analyzed for defects involving chromosomes 1, 5, and 17. Following cell immunophenotyping and FISH probe hybridization, a mean of 174,216 mononuclear cells was assessed per sample. Chromosomal abnormalities including gain(1q), del(5q), idic (5), monosomy 17, and/or del(17p) were identified in eight patients, at frequencies down to 0.2% of mononuclear cells. Serial analyses revealed emergence of new chromosomal lesions, clonal evolution, dominance, and multi-hit abnormalities. In three patients, acquired chromosome 17 abnormalities preceded progression to secondary leukemia by up to 7 months. This pilot study demonstrates that imaging flow cytometry-based FISH of circulating CD34/CD45-positive cells enables real-time, blood-based surveillance for cytogenetic evolution in myelofibrosis. The ability to dynamically track clone size and hierarchy highlights its potential as an early predictor of leukemic transformation in myelofibrosis.

骨髓纤维化是一种骨髓增生性肿瘤,有可能转变为急性髓系白血病。这种演变是不可预测的,目前的分析缺乏预测这种转变所需的敏感性和适用性。虽然利用综合基因组图谱的人口水平数据可以确定进展风险较高的亚组,但它们不能提供有关白血病可能性或时间的个性化信息。细胞遗传学改变通常出现在继发性白血病中。我们的目的是确定这些变化是否可以在早期阶段被检测到。为了实现这一目标,我们建立并测试了一种单细胞成像流式细胞术方法,使用荧光原位杂交(FISH)探针分析循环CD34/ cd45阳性细胞的染色体畸变。在34个月的时间里,从14名患者中收集了多达8个时间点的外周血样本,分析了涉及染色体1、5和17的缺陷。在细胞免疫表型和FISH探针杂交后,每个样本平均评估了174,216个单个核细胞。染色体异常包括gain(1q)、del(5q)、idic(5)、单体17和/或del(17p),在8例患者中被发现,频率低至0.2%的单个核细胞。系列分析显示出现新的染色体病变,克隆进化,优势和多命中异常。在3例患者中,获得性17号染色体异常在进展为继发性白血病之前长达7个月。这项初步研究表明,基于成像流式细胞术的循环CD34/ cd45阳性细胞FISH能够实时、基于血液的监测骨髓纤维化的细胞遗传学进化。动态跟踪克隆大小和层次的能力突出了其作为骨髓纤维化中白血病转化的早期预测因子的潜力。
{"title":"Imaging Flow Cytometry Detection of Cytogenetic Abnormalities in Circulating CD34+ Cells Predicts Leukemic Transformation in Myelofibrosis.","authors":"Ruby M Hamilton, Ryan J Collinson, Henry Y Hui, Zi Yun Ng, Hun S Chuah, Malcolm Webb, Belinda B Guo, Wendy N Erber, Kathy A Fuller","doi":"10.1002/cytoa.70012","DOIUrl":"https://doi.org/10.1002/cytoa.70012","url":null,"abstract":"<p><p>Myelofibrosis is a myeloproliferative neoplasm with potential to transform to acute myeloid leukemia. This evolution is unpredictable and current assays lack the sensitivity and applicability needed to predict this transformation. While population-level data utilizing comprehensive genomic profiling can identify subgroups at higher risk of progression, they do not provide individualized information on the likelihood or timing of leukemia. Cytogenetic alterations are typically present in secondary leukemia. We aimed to determine whether these changes could be detected at an early stage. To achieve this we established and tested a single-cell imaging flow cytometric method for chromosomal aberrations using fluorescence in situ hybridization (FISH) probes to analyze circulating CD34/CD45-positive cells. Peripheral blood samples from 14 patients, collected at up to eight timepoints over a 34-month period, were analyzed for defects involving chromosomes 1, 5, and 17. Following cell immunophenotyping and FISH probe hybridization, a mean of 174,216 mononuclear cells was assessed per sample. Chromosomal abnormalities including gain(1q), del(5q), idic (5), monosomy 17, and/or del(17p) were identified in eight patients, at frequencies down to 0.2% of mononuclear cells. Serial analyses revealed emergence of new chromosomal lesions, clonal evolution, dominance, and multi-hit abnormalities. In three patients, acquired chromosome 17 abnormalities preceded progression to secondary leukemia by up to 7 months. This pilot study demonstrates that imaging flow cytometry-based FISH of circulating CD34/CD45-positive cells enables real-time, blood-based surveillance for cytogenetic evolution in myelofibrosis. The ability to dynamically track clone size and hierarchy highlights its potential as an early predictor of leukemic transformation in myelofibrosis.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146112421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Label-Free Holographic Imaging Flow Cytometry With Deep-Learning-Based Detection and Classification of Thousands of Cells Per Second. 基于深度学习的每秒数千个细胞检测和分类的无标签全息成像流式细胞术。
IF 2.1 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-27 DOI: 10.1002/cytoa.70008
Dana Yagoda-Aharoni, Eden Dotan, Matan Dudaie, Natan T Shaked

We present a new end-to-end neural network approach for real-time biological cell detection and classification via label-free quantitative imaging flow cytometry based on digital holography, offering a comprehensive representation of cellular structures without the need for chemical cell staining. In contrast to previous studies, our method is the first to obtain classification and detection of cells, imaged during flow using large-magnification microscopy, in 0.44 msec, allowing real-time label-free imaging flow cytometry, with more than 10× speedup compared to YOLOv8n. The custom-made two-stage neural network consists of fixed convolution layers using image processing filters to detect a single location per object, followed by two convolutional layers that classify each detected cell. This approach enables reducing computational complexity and offers high-throughput, label-free imaging-based analysis suitable for real-time imaging flow cytometry. We validate the method on two cell datasets, T-cells at different activation stages and cancer cells of different metastatic potentials, demonstrating the method's adaptability. Our results show the ability to image, detect, and classify thousands of cells per second during flow, highlighting the potential of label-free imaging flow cytometry for real-time cell monitoring, early disease detection, and high-speed diagnostics.

我们提出了一种新的端到端神经网络方法,通过基于数字全息的无标记定量成像流式细胞术进行实时生物细胞检测和分类,提供了细胞结构的全面表示,而无需化学细胞染色。与以往的研究相比,我们的方法首次在0.44 msec内实现了流式成像细胞的分类和检测,实现了实时无标记成像流式细胞术,与YOLOv8n相比,速度提高了10倍以上。定制的两阶段神经网络由固定的卷积层组成,使用图像处理过滤器检测每个物体的单个位置,然后是两个卷积层,对每个检测到的细胞进行分类。这种方法可以降低计算复杂性,并提供适合实时成像流式细胞术的高通量、无标签成像分析。我们在两个细胞数据集上验证了该方法,分别是处于不同激活阶段的t细胞和具有不同转移潜力的癌细胞,证明了该方法的适应性。我们的研究结果显示,在流式细胞术中,每秒可以对数千个细胞进行成像、检测和分类,突出了无标记成像流式细胞术在实时细胞监测、早期疾病检测和高速诊断方面的潜力。
{"title":"Label-Free Holographic Imaging Flow Cytometry With Deep-Learning-Based Detection and Classification of Thousands of Cells Per Second.","authors":"Dana Yagoda-Aharoni, Eden Dotan, Matan Dudaie, Natan T Shaked","doi":"10.1002/cytoa.70008","DOIUrl":"https://doi.org/10.1002/cytoa.70008","url":null,"abstract":"<p><p>We present a new end-to-end neural network approach for real-time biological cell detection and classification via label-free quantitative imaging flow cytometry based on digital holography, offering a comprehensive representation of cellular structures without the need for chemical cell staining. In contrast to previous studies, our method is the first to obtain classification and detection of cells, imaged during flow using large-magnification microscopy, in 0.44 msec, allowing real-time label-free imaging flow cytometry, with more than 10× speedup compared to YOLOv8n. The custom-made two-stage neural network consists of fixed convolution layers using image processing filters to detect a single location per object, followed by two convolutional layers that classify each detected cell. This approach enables reducing computational complexity and offers high-throughput, label-free imaging-based analysis suitable for real-time imaging flow cytometry. We validate the method on two cell datasets, T-cells at different activation stages and cancer cells of different metastatic potentials, demonstrating the method's adaptability. Our results show the ability to image, detect, and classify thousands of cells per second during flow, highlighting the potential of label-free imaging flow cytometry for real-time cell monitoring, early disease detection, and high-speed diagnostics.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146050817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Cell Morphometrics From Hematoxylin and Eosin-Stained Images Reveals Subtype-Specific Features in Chronic Lymphocytic Leukemia 苏木精和伊红染色图像的单细胞形态测定揭示了慢性淋巴细胞白血病的亚型特异性特征。
IF 2.1 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-20 DOI: 10.1002/cytoa.70010
María Cecilia Cabral Lorenzo, Juan Quarroz Braghini, Gregorio Cordini, Tomás Lombardo, Laura Kornblihtt, Guillermo Blanco

Chronic lymphocytic leukemia (CLL) is a highly heterogeneous B-cell malignancy, spanning a spectrum from indolent conventional forms (C-CLL) to Richter transformation. Accelerated CLL (A-CLL) represents an intermediate subtype, histologically and clinically more aggressive than C-CLL, yet its diagnosis relies on subjective histological criteria. We hypothesized that high-dimensional single-cell morphometrics from routine hematoxylin and eosin-stained lymph node biopsies could provide complementary metrics for positioning cases along the disease continuum. We implemented a novel, open-source methodology using CellProfiler and Seurat to segment cells and measure hundreds of parameters from two indolent and two aggressive cases. Datasets were integrated to mitigate technical batch effects. Our analysis combined an unsupervised approach with trajectory analysis and a pathologist-guided supervised machine learning model. Both unsupervised and supervised approaches successfully and independently distinguished aggressive from indolent cases. Aggressive cases were enriched in morphometric clusters corresponding to paraimmunoblasts, while indolent cases were enriched in those corresponding to small lymphocytes. Pseudo-bulk analysis using a subset of key parameters also successfully classified patients. In this highly exploratory, proof-of-concept study utilizing a small, well-characterized cohort (n = 4 CLL patients plus 2 RT reference cases), we present a robust and traceable single-cell morphometric pipeline. By providing objective metrics of cellular and subcellular morphology, our method reveals strong segregation patterns reflecting the CLL continuum. Our findings warrant validation in larger cohorts, but offer novel, quantifiable insights that could potentially complement diagnostic criteria and aid in patient stratification.

慢性淋巴细胞白血病(CLL)是一种高度异质性的b细胞恶性肿瘤,从惰性常规形式(C-CLL)到里希特转化。加速型CLL (A-CLL)是一种中间亚型,在组织学和临床上比C-CLL更具侵袭性,但其诊断依赖于主观组织学标准。我们假设,来自常规苏木精和伊红染色淋巴结活检的高维单细胞形态计量学可以为沿着疾病连续体定位病例提供补充指标。我们使用CellProfiler和Seurat实现了一种新颖的开源方法来分割细胞,并测量了两种惰性和两种侵袭性情况下的数百个参数。整合数据集以减轻技术批量影响。我们的分析结合了无监督方法与轨迹分析和病理学指导的监督机器学习模型。无监督和有监督的方法都成功地独立地区分了侵略性和惰性病例。侵袭性病例富含与副免疫母细胞相对应的形态学簇,而惰性病例则富含与小淋巴细胞相对应的形态学簇。使用关键参数子集的伪批量分析也成功地对患者进行了分类。在这项高度探索性的概念验证研究中,我们利用了一个小的、特征明确的队列(n = 4名CLL患者加上2例RT参考病例),提出了一个强大的、可追溯的单细胞形态测量管道。通过提供细胞和亚细胞形态的客观指标,我们的方法揭示了反映CLL连续体的强分离模式。我们的研究结果在更大的队列中得到了验证,但提供了新的、可量化的见解,可能会补充诊断标准,并有助于患者分层。
{"title":"Single-Cell Morphometrics From Hematoxylin and Eosin-Stained Images Reveals Subtype-Specific Features in Chronic Lymphocytic Leukemia","authors":"María Cecilia Cabral Lorenzo,&nbsp;Juan Quarroz Braghini,&nbsp;Gregorio Cordini,&nbsp;Tomás Lombardo,&nbsp;Laura Kornblihtt,&nbsp;Guillermo Blanco","doi":"10.1002/cytoa.70010","DOIUrl":"10.1002/cytoa.70010","url":null,"abstract":"<div>\u0000 \u0000 <p>Chronic lymphocytic leukemia (CLL) is a highly heterogeneous B-cell malignancy, spanning a spectrum from indolent conventional forms (C-CLL) to Richter transformation. Accelerated CLL (A-CLL) represents an intermediate subtype, histologically and clinically more aggressive than C-CLL, yet its diagnosis relies on subjective histological criteria. We hypothesized that high-dimensional single-cell morphometrics from routine hematoxylin and eosin-stained lymph node biopsies could provide complementary metrics for positioning cases along the disease continuum. We implemented a novel, open-source methodology using CellProfiler and Seurat to segment cells and measure hundreds of parameters from two indolent and two aggressive cases. Datasets were integrated to mitigate technical batch effects. Our analysis combined an unsupervised approach with trajectory analysis and a pathologist-guided supervised machine learning model. Both unsupervised and supervised approaches successfully and independently distinguished aggressive from indolent cases. Aggressive cases were enriched in morphometric clusters corresponding to paraimmunoblasts, while indolent cases were enriched in those corresponding to small lymphocytes. Pseudo-bulk analysis using a subset of key parameters also successfully classified patients. In this highly exploratory, proof-of-concept study utilizing a small, well-characterized cohort (<i>n</i> = 4 CLL patients plus 2 RT reference cases), we present a robust and traceable single-cell morphometric pipeline. By providing objective metrics of cellular and subcellular morphology, our method reveals strong segregation patterns reflecting the CLL continuum. Our findings warrant validation in larger cohorts, but offer novel, quantifiable insights that could potentially complement diagnostic criteria and aid in patient stratification.</p>\u0000 </div>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"109 1","pages":"62-79"},"PeriodicalIF":2.1,"publicationDate":"2026-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146009227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TimeFlow 2: An Unsupervised Cell Lineage Detection Method for Flow Cytometry Data TimeFlow 2:一种流式细胞术数据的无监督细胞谱系检测方法。
IF 2.1 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-08 DOI: 10.1002/cytoa.70006
Margarita Liarou, Thomas Matthes, Stéphane Marchand-Maillet

Cell lineage detection refers to the inference of differentiation pathways from immature cells to distinct mature cell types. We developed TimeFlow 2, a new method for lineage inference in large flow cytometry datasets. It uses a single static snapshot of unordered cells and does not require prior knowledge of the number of pathways, cell types or temporal labels. TimeFlow 2 uses the cell orderings from TimeFlow and defines coarse cell states along pseudotime segments. By connecting these states, it constructs paths at the cell state level. To approximate the trajectory structure, it further groups the paths based on an optimal transport-based cost function. We used TimeFlow 2 on three healthy bone marrow samples and accurately assigned monocytes, neutrophils, erythrocytes and B-cells of different maturation stages to four distinct pathways. Marker dynamics across the inferred pathways showed highly correlated patterns for the corresponding lineages in all three patients. We compared the performance of TimeFlow 2 and three other established methods using standard classification and correlation metrics. TimeFlow 2 outperformed the others on flow cytometry datasets and remained competitive on the challenging mass cytometry datasets. Overall, TimeFlow 2 detects biologically informative pathways, allowing bioinformaticians to model and compare marker dynamics across cell lineages in a data-driven way. Source code in Python and tutorials are available at https://github.com/MargaritaLiarou1/TimeFlow2.

细胞谱系检测是指从未成熟细胞到不同成熟细胞类型的分化途径的推断。我们开发了TimeFlow 2,一种在大型流式细胞术数据集中进行谱系推断的新方法。它使用无序细胞的单个静态快照,不需要事先了解途径的数量、细胞类型或时间标记。TimeFlow 2使用来自TimeFlow的单元格排序,并沿着伪时间段定义粗单元格状态。通过连接这些状态,它在单元状态级别构建路径。为了近似轨迹结构,它进一步基于最优运输成本函数对路径进行分组。我们在三个健康骨髓样本上使用TimeFlow 2,并准确地将不同成熟阶段的单核细胞、中性粒细胞、红细胞和b细胞分配到四个不同的途径。在所有三名患者中,通过推断途径的标记动态显示出相应谱系的高度相关模式。我们使用标准分类和相关指标比较了TimeFlow 2和其他三种既定方法的性能。TimeFlow 2在流式细胞术数据集上的表现优于其他产品,并在具有挑战性的质量细胞术数据集上保持竞争力。总的来说,TimeFlow 2可以检测生物信息通路,允许生物信息学家以数据驱动的方式建模和比较细胞系中的标记动态。Python源代码和教程可在https://github.com/MargaritaLiarou1/TimeFlow2上获得。
{"title":"TimeFlow 2: An Unsupervised Cell Lineage Detection Method for Flow Cytometry Data","authors":"Margarita Liarou,&nbsp;Thomas Matthes,&nbsp;Stéphane Marchand-Maillet","doi":"10.1002/cytoa.70006","DOIUrl":"10.1002/cytoa.70006","url":null,"abstract":"<p>Cell lineage detection refers to the inference of differentiation pathways from immature cells to distinct mature cell types. We developed TimeFlow 2, a new method for lineage inference in large flow cytometry datasets. It uses a single static snapshot of unordered cells and does not require prior knowledge of the number of pathways, cell types or temporal labels. TimeFlow 2 uses the cell orderings from TimeFlow and defines coarse cell states along pseudotime segments. By connecting these states, it constructs paths at the cell state level. To approximate the trajectory structure, it further groups the paths based on an optimal transport-based cost function. We used TimeFlow 2 on three healthy bone marrow samples and accurately assigned monocytes, neutrophils, erythrocytes and B-cells of different maturation stages to four distinct pathways. Marker dynamics across the inferred pathways showed highly correlated patterns for the corresponding lineages in all three patients. We compared the performance of TimeFlow 2 and three other established methods using standard classification and correlation metrics. TimeFlow 2 outperformed the others on flow cytometry datasets and remained competitive on the challenging mass cytometry datasets. Overall, TimeFlow 2 detects biologically informative pathways, allowing bioinformaticians to model and compare marker dynamics across cell lineages in a data-driven way. Source code in Python and tutorials are available at https://github.com/MargaritaLiarou1/TimeFlow2.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"109 1","pages":"42-61"},"PeriodicalIF":2.1,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cytoa.70006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145931533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Matrix Recovery Algorithm for Reconstructing Mixing Matrices From Raw Observations and Ordinary Least Squares Unmixed Abundance Values 从原始观测和普通最小二乘未混合丰度值重建混合矩阵的矩阵恢复算法。
IF 2.1 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-04 DOI: 10.1002/cytoa.70005
Ryan Kmet, David Novo
<div> <p>Flow cytometric analysis requires accurate spectral unmixing using a mixing matrix (<span></span><math> <semantics> <mrow> <mi>M</mi> </mrow> </semantics></math>) to deconvolve overlapping fluorescent signals into individual fluorochrome abundances. However, current Flow Cytometry Standard (FCS) data formats inadequately support the archival storage of <span></span><math> <semantics> <mrow> <mi>M</mi> </mrow> </semantics></math> alongside experimental data, significantly compromising analytical reproducibility and method transparency. We present a novel matrix recovery (MR) algorithm that computationally reconstructs the original <span></span><math> <semantics> <mrow> <mi>M</mi> </mrow> </semantics></math> from archived raw detector observations and previously calculated unmixed abundance values. For ordinary least squares (OLS) unmixing methodologies, our algorithm achieves mathematically exact recovery with numerical errors below <span></span><math> <semantics> <mrow> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math> using the closed-form solution <span></span><math> <semantics> <mrow> <mi>M</mi> <mo>=</mo> <msup> <mfenced> <mrow> <mi>A</mi> <mo>⋅</mo> <msup> <mi>O</mi> <mo>+</mo> </msup> </mrow> </mfenced> <mo>+</mo> </msup> </mrow> </semantics></math>, where matrix <span></span><math> <semantics> <mrow> <mi>A</mi> </mrow> </semantics></math> contains unmixed abundances and matrix <span></span><math> <semantics> <mrow> <mi>O</mi> </mrow> </semantics></math> contains raw observations. Comprehensive validation across six commercial cytometric platforms, encompassing detector arrays ranging from 55 to 182 channels and endmember panels from 10 to 47 fluorochromes, confirmed algorithmic accuracy for OLS-based compensation systems. While weighted least squares (WLS) recovery remains theoretically feasible, computational complexity renders current implementations intractable for practical applications. This matrix recovery approach pr
流式细胞分析需要使用混合矩阵(M $$ M $$ )将重叠的荧光信号反卷积成单个荧光色素丰度。然而,目前的流式细胞术标准(FCS)数据格式不足以支持M的存档存储 $$ M $$ 与实验数据一起,显著影响分析的可重复性和方法的透明度。提出了一种新的矩阵恢复(MR)算法,该算法通过计算重建原始的M $$ M $$ 从存档的原始探测器观测和先前计算的未混合丰度值。对于普通最小二乘(OLS)解混方法,我们的算法可以在数学上精确地恢复,数值误差小于10 - 4 $$ {10}^{-4} $$ 采用封闭解M = A·O·O + + $$ M={left(Acdot {O}^{+}right)}^{+} $$ ,其中矩阵A $$ A $$ 包含未混合丰度和矩阵O $$ O $$ 包含原始观察。在六个商业细胞分析平台上进行全面验证,包括从55到182通道的检测器阵列和从10到47个荧光色的端元面板,证实了基于ols的补偿系统的算法准确性。虽然加权最小二乘(WLS)恢复在理论上是可行的,但计算复杂性使得目前的实现在实际应用中难以实现。当制造商未能提供标准化的M时,这种矩阵恢复方法为回顾性分析提供了关键工具 $$ M $$ 存储,尽管我们强调系统地包含M $$ M $$ 在FCS文件规范内仍然是确保流式细胞术分析重现性的最佳长期解决方案。
{"title":"Matrix Recovery Algorithm for Reconstructing Mixing Matrices From Raw Observations and Ordinary Least Squares Unmixed Abundance Values","authors":"Ryan Kmet,&nbsp;David Novo","doi":"10.1002/cytoa.70005","DOIUrl":"10.1002/cytoa.70005","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;Flow cytometric analysis requires accurate spectral unmixing using a mixing matrix (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) to deconvolve overlapping fluorescent signals into individual fluorochrome abundances. However, current Flow Cytometry Standard (FCS) data formats inadequately support the archival storage of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; alongside experimental data, significantly compromising analytical reproducibility and method transparency. We present a novel matrix recovery (MR) algorithm that computationally reconstructs the original &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; from archived raw detector observations and previously calculated unmixed abundance values. For ordinary least squares (OLS) unmixing methodologies, our algorithm achieves mathematically exact recovery with numerical errors below &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mn&gt;10&lt;/mn&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; using the closed-form solution &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mo&gt;⋅&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;O&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, where matrix &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; contains unmixed abundances and matrix &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;O&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; contains raw observations. Comprehensive validation across six commercial cytometric platforms, encompassing detector arrays ranging from 55 to 182 channels and endmember panels from 10 to 47 fluorochromes, confirmed algorithmic accuracy for OLS-based compensation systems. While weighted least squares (WLS) recovery remains theoretically feasible, computational complexity renders current implementations intractable for practical applications. This matrix recovery approach pr","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"109 1","pages":"80-84"},"PeriodicalIF":2.1,"publicationDate":"2026-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145899212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyt-Geist: Current and Future Challenges in Cytometry: Reports of the CYTO 2025 Conference Workshops Cyt-Geist:细胞术当前和未来的挑战:CYTO 2025会议研讨会报告。
IF 2.1 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-30 DOI: 10.1002/cytoa.70002
Paul K. Wallace, Evan R. Jellison, Sherry Thornton, Kathleen Kluepfel, Jessica Back, Thomas C. Beadnell, Attila Bebes, Jochen Behrends, Anna C. Belkina, Michele Black, Goce Bogdanoski, Mariela Bollati-Fogolín, Sarah Bonte, Katrien Van der Borght, Ryan R. Brinkman, Kathleen Brundage, Tim Bushnell, Daniel T. Chiu, Norman Chow, Christopher O. Ciccolella, Matthew Cochran, Kamila Czechowska, Kleopatra Dagla, Benjamin Daniel, Gelo de la Cruz, Julie Van Duyse, Laura Ferrer Font, Òscar Fornas, Sara Garcia-Garcia, Rui Gardner, Sofie Van Gassen, Daniel Gimenes, Richard Grenfell, Madeline J. Grider-Hayes, Randall Grose, Christopher Hall, Kathryn E. Hally, Marjolijn Hameetman, Karen Hogg, Jessica Houston, Jonathan M. Irish, Gert Van Isterdael, Maria Jaimes, Sylvia Janetzki, Cheryl Kim, Abhishek Koladiya, Jochen Lamote, Joanne Lannigan, Julien Leconte, Virginia Litwin, Ana Longhini, Nicolas Loof, Estefanía Lozano-Andrés, Kelly Lundsten, Peter Mage, Florian Mair, Catarina Gregório Martins, Megan McCausland, Helen M. McGuire, Justin Meskas, William Murphy, John Nolan, Barbara Oliveira, Diana Ordoñez-Rueda, Eva Orlowski-Oliver, Charlotte Christie Petersen, Nicole J. Poulton, Givanna Putri, Karen J. Quadrini, Beata Ramasz, Donald Ruhrmund, Vikas V. Singh, Sam J. Small, Natalie J. Smith, Josef Spidlen, Camille Stegen, Tamar Tak, Sam Thompson, Michael Thomson, Daniel Vocelle, Rachael V. Walker, Robin E. Walsh, Lili Wang, Yu-Fen Wang, Andrea, Meredith Weglarz, Moritz Winker, James C. S. Wood, Stacie Woolard, Nai-Yu Yeh, Raif Yuecel, Bartek Rajwa
<p>Organized by the International Society for Advancement of Cytometry (ISAC), the CYTO conference is one of the most important events for everyone interested in cytometry and quantitative single-cell analysis. It is an annual gathering of cytometry experts and novices in the field, all with a passion for cytometry. This meeting is an opportunity to learn exciting, cutting-edge research directly from the source by attending the Frontiers and State-of-the-Art lectures, research and technology sessions, and Scientific Tutorials.</p><p>CYTO conferences are also the premier live forum for discussing current and emerging challenges in cytometry and associated sciences through an interactive workshop format. Workshops attract considerable attention within and outside the cytometry community as they address where we stand in specific fields of interest to cytometrists, how current issues with the evolving technologies within the field can be addressed and solved, and what future areas for development exist. Due to the limited time frame allocated to this format, however, workshops run in parallel, preventing attendees from participating in all sessions of interest. Moreover, those unable to attend the CYTO conference miss the content entirely. Therefore, we continue the tradition of summarizing all workshops to disseminate the information provided and to capture the state-of-the-art view of the community. The primary purpose of creating such a combined summary is to preserve the record of live discussions and main conclusions, propose potential guidelines, and make them available to the broader public.</p><p>The publication of workshop summaries and their availability to a global audience not only captures live discussions but also undoubtedly seeds new initiatives to support emerging topics or trends. This “Cyt-Geist,” a play on the German <i>Zeitgeist</i>, meaning “spirit of the age”, aims to document the defining spirit and collective consciousness of the cytometry field at this moment in time. Just as <i>Zeitgeist</i> captures the prevailing ideas and beliefs of an era, <i>Cyt-Geist</i> captures the current challenges, innovations, and forward momentum that characterize our community. The joint effort begun in 2018 and continued in 2019 by Kamila Czechowska proved to be a valuable reference [<span>1, 2</span>]. Building on that spirit, we present summaries from CYTO 2025, held in Denver, Colorado, from May 31 to June 4.</p><p>This manuscript serves as a summary report of 15 workshops held at CYTO 2025. We present, in concise form, the current and future challenges in cytometry identified by workshop organizers and participants. The manuscript is organized into three thematic sections: Building the Cytometry Infrastructure of the Future (Standardization, Sharing, and Sustainability in Cytometric Practice); Applied Innovation Across Modalities (Expanding Possibilities: From Fluorescence to Imaging and Automated Annotation); and the People Behind the P
CYTO会议由国际细胞术进步协会(ISAC)组织,是对细胞术和定量单细胞分析感兴趣的每个人最重要的事件之一。这是一个年度聚会的专家和新手在该领域,所有与细胞术的热情。本次会议是一个机会,通过参加前沿和最先进的讲座,研究和技术会议以及科学教程,直接从源头学习令人兴奋的前沿研究。CYTO会议也是通过互动研讨会形式讨论细胞术和相关科学中当前和新出现的挑战的首要现场论坛。研讨会吸引了细胞术界内外的大量关注,因为它们讨论了我们在细胞术学家感兴趣的特定领域中的立场,如何处理和解决该领域内不断发展的技术的当前问题,以及存在哪些未来的发展领域。然而,由于分配给这种形式的时间有限,讲习班并行进行,使与会者无法参加所有感兴趣的会议。此外,那些无法参加CYTO会议的人完全错过了内容。因此,我们延续了总结所有工作坊的传统,以传播所提供的信息,并捕捉社区的最新观点。创建这种综合摘要的主要目的是保存现场讨论和主要结论的记录,提出潜在的指导方针,并使其可供更广泛的公众使用。研讨会摘要的出版及其对全球受众的可用性不仅捕获了现场讨论,而且无疑为支持新兴主题或趋势的新举措播下了种子。“Cyt-Geist”是对德国时代精神(Zeitgeist)的演绎,意为“时代精神”,旨在记录细胞术领域在这一时刻的定义精神和集体意识。正如时代精神(Zeitgeist)抓住了一个时代的主流思想和信仰,Cyt-Geist抓住了当前的挑战、创新和前进的动力,这些都是我们社区的特征。Kamila Czechowska于2018年开始并于2019年继续进行的共同努力被证明是有价值的参考[1,2]。本着这一精神,我们将介绍5月31日至6月4日在科罗拉多州丹佛市举行的CYTO 2025的总结。这份手稿是CYTO 2025举办的15个研讨会的总结报告。我们将以简明的形式介绍由研讨会组织者和参与者确定的细胞术当前和未来的挑战。该手稿分为三个主题部分:构建未来的细胞计数基础设施(细胞计数实践的标准化,共享和可持续性);跨模式应用创新(扩展可能性:从荧光到成像和自动注释);以及面板背后的人(工作流程,工作空间和细胞术的人的一面)。每个部分都涉及现代细胞术实践的关键方面,从基础设施和技术创新到专业发展和操作可持续性。我们打算通过这个联合研讨会报告为参与单细胞分析和细胞术的全球社区服务。研讨会2、3、7、8和13讨论了确保细胞术社区在未来几年取得成功所需的基础框架。主题范围从样品处理的分析前考虑到仪器和文件格式的标准化,从数据管理到公共存储库的未来。这些讨论共同强调,细胞术的可持续发展不仅取决于创新,还取决于建立健全的基础设施、共享的标准和可靠的实践。WS02(分析前变量)检查了可能影响外周血单个核细胞(PBMCs)质量的众多因素和下游分析的解释,强调了定义使用背景(COU)和最小化可变性的重要性。WS08(光谱标准化)强调了社区驱动的最佳实践的必要性,以解释平台、试剂和数据分析方法的差异,包括命名和分离。WS13 (FCS 4.0)提供了FCS文件格式的历史背景,并概述了社区对标准进行现代化以支持光谱数据、互操作性和高维分析的优先事项和时间表。WS03 (FlowRepository)侧重于社区资源的可持续性和治理,强调对可访问性、明确许可和前瞻性技术开发的需求。WS07(数据管理和共享)带来了共享资源实验室(srl)的视角,倡导广泛采用FAIR数据原则,以支持可重复性、可访问性和长期科学价值。 综上所述,这些研讨会的成果指向一个中心结论:细胞术的未来取决于基础设施的共同责任。通过协调实践,投资于可持续平台,培养开放数据和可重复性的文化,社区可以确保细胞术仍然是生物医学发现的基石。建立工作组和工作组,并通过社区平台继续进行讨论,表明致力于将研讨会的见解转化为可操作的进展。尼古拉斯·鲁夫、梅雷迪思·维格拉兹、杰西卡·巴克、本杰明·丹尼尔、谢丽尔·金和威廉·墨菲、约瑟夫·斯皮德伦、玛德琳·j·格雷德-海斯、乔纳森·m·爱尔兰、王玉芬(安德里亚)、阿布舍克·科拉迪亚、苏菲·范·加森、巴特克·拉杰瓦、弗洛里安·梅尔和杰西卡·休斯顿——王玉芬(安德里亚)、叶乃宇、阿布舍克·科拉迪亚、玛德琳·j·格雷德-海斯、约瑟夫·斯皮德伦、彼得·麦格、克里斯托弗·奇科莱拉和乔纳森·m·爱尔兰山姆·汤普森、克莱奥帕特拉·达格拉、卡特琳·范德博特、朱莉·范·杜伊斯、山姆·j·斯莫尔、Charlotte Christie Petersen和Rachael V. WalkerThomas C. Beadnell, Helen M. McGuire, Natalie J. Smith, Vikas Singh, Robin E. Walsh, Karen J. Quadrini和Sylvia janetzki本部分的研讨会探讨了细胞术如何超越其传统界限,结合荧光,成像,自动化和新的分析方式的创新。这些会议反映了一个共同的目标:以提高可重复性、扩大应用范围和实现新的生物学见解的方式利用新兴技术。WS01(水生细胞术)强调了环境细胞术对标准化协议和协作框架的迫切需求,强调了水生和非传统样本分析的复杂性。WS10(图像细胞术)解决了围绕基于图像的方法的定义和方法上的歧义,呼吁在术语、特征和标准上达成共识。WS12(定量流式细胞术)重新校准和验证,展示了定量方法如何提高再现性和促进跨平台的可比性。WS06 (SOULCAP)演示了自动化注释和标准化本体如何解决细胞群命名中的不一致性并加速大规模分析。最后,WS04 (Autofluorescence)将自体荧光重新定义为生物信号来源,而不是噪声来源,提出了将自体荧光表型(AFP)纳入主流实践的工具和标准。在该类别的所有研讨会中,对社区驱动的标准化方法或解决看似无法克服的问题的努力的明确讨论无处不在。在我们进入这个十年的后半期时,ISAC有能力引导这些努力。在这个十年的后半期,一场全球大流行开始了,需要医学界和科学界(包括细胞学家)采取“全体人员”的方法来控制它。与大流行类似,“我们还没有摆脱困境”,但社区推动的细胞术努力将继续引领这一领域走向更光明的未来。总之,这些研讨会强调了一个充满活力的前沿:细胞术界不仅改进了它的工具,而且重新定义了细胞术的功能,将已建立的荧光方法与成像、自动化和计算创新相结合。阿提拉·贝贝斯、妮可·j·波尔顿和拉夫·维切尔、约亨·贝伦兹、丹尼尔·沃切尔、贝娅塔·拉马兹、吉洛·德拉·克鲁兹、丹尼尔·吉梅内斯、莫里茨·温克、Òscar福纳斯、格特·范·伊斯特达尔、约亨·拉莫特和凯伦·霍格、约翰·诺兰、莉莉·王、丹尼尔·t·丘、詹姆斯·伍德和维吉尼亚·利特温、瑞安·布林克曼、格斯·博格达诺斯基、莎拉·邦特、卡米拉·Czechowska、凯莉·伦德斯滕、贾斯汀·梅斯卡斯、吉瓦娜·普特里、苏菲·范·加森和SOULCAP基金会、丹尼尔·沃切尔、塔玛·德、细胞术不仅依靠仪器和数据,还依靠设计、操作和解释实验的人员。本部分的研讨会集中于专业发展、交流,以及在不同的工作空间中维持高质量科学的实践。他们共同强调,只有与有效的沟通、公平的工作场所和社区驱动的标准相结合,稳健的工作流程和可靠的技术才能取得成功。作为细胞术的领导者,特别是在SRL中,需要培养
{"title":"Cyt-Geist: Current and Future Challenges in Cytometry: Reports of the CYTO 2025 Conference Workshops","authors":"Paul K. Wallace,&nbsp;Evan R. Jellison,&nbsp;Sherry Thornton,&nbsp;Kathleen Kluepfel,&nbsp;Jessica Back,&nbsp;Thomas C. Beadnell,&nbsp;Attila Bebes,&nbsp;Jochen Behrends,&nbsp;Anna C. Belkina,&nbsp;Michele Black,&nbsp;Goce Bogdanoski,&nbsp;Mariela Bollati-Fogolín,&nbsp;Sarah Bonte,&nbsp;Katrien Van der Borght,&nbsp;Ryan R. Brinkman,&nbsp;Kathleen Brundage,&nbsp;Tim Bushnell,&nbsp;Daniel T. Chiu,&nbsp;Norman Chow,&nbsp;Christopher O. Ciccolella,&nbsp;Matthew Cochran,&nbsp;Kamila Czechowska,&nbsp;Kleopatra Dagla,&nbsp;Benjamin Daniel,&nbsp;Gelo de la Cruz,&nbsp;Julie Van Duyse,&nbsp;Laura Ferrer Font,&nbsp;Òscar Fornas,&nbsp;Sara Garcia-Garcia,&nbsp;Rui Gardner,&nbsp;Sofie Van Gassen,&nbsp;Daniel Gimenes,&nbsp;Richard Grenfell,&nbsp;Madeline J. Grider-Hayes,&nbsp;Randall Grose,&nbsp;Christopher Hall,&nbsp;Kathryn E. Hally,&nbsp;Marjolijn Hameetman,&nbsp;Karen Hogg,&nbsp;Jessica Houston,&nbsp;Jonathan M. Irish,&nbsp;Gert Van Isterdael,&nbsp;Maria Jaimes,&nbsp;Sylvia Janetzki,&nbsp;Cheryl Kim,&nbsp;Abhishek Koladiya,&nbsp;Jochen Lamote,&nbsp;Joanne Lannigan,&nbsp;Julien Leconte,&nbsp;Virginia Litwin,&nbsp;Ana Longhini,&nbsp;Nicolas Loof,&nbsp;Estefanía Lozano-Andrés,&nbsp;Kelly Lundsten,&nbsp;Peter Mage,&nbsp;Florian Mair,&nbsp;Catarina Gregório Martins,&nbsp;Megan McCausland,&nbsp;Helen M. McGuire,&nbsp;Justin Meskas,&nbsp;William Murphy,&nbsp;John Nolan,&nbsp;Barbara Oliveira,&nbsp;Diana Ordoñez-Rueda,&nbsp;Eva Orlowski-Oliver,&nbsp;Charlotte Christie Petersen,&nbsp;Nicole J. Poulton,&nbsp;Givanna Putri,&nbsp;Karen J. Quadrini,&nbsp;Beata Ramasz,&nbsp;Donald Ruhrmund,&nbsp;Vikas V. Singh,&nbsp;Sam J. Small,&nbsp;Natalie J. Smith,&nbsp;Josef Spidlen,&nbsp;Camille Stegen,&nbsp;Tamar Tak,&nbsp;Sam Thompson,&nbsp;Michael Thomson,&nbsp;Daniel Vocelle,&nbsp;Rachael V. Walker,&nbsp;Robin E. Walsh,&nbsp;Lili Wang,&nbsp;Yu-Fen Wang,&nbsp;Andrea,&nbsp;Meredith Weglarz,&nbsp;Moritz Winker,&nbsp;James C. S. Wood,&nbsp;Stacie Woolard,&nbsp;Nai-Yu Yeh,&nbsp;Raif Yuecel,&nbsp;Bartek Rajwa","doi":"10.1002/cytoa.70002","DOIUrl":"10.1002/cytoa.70002","url":null,"abstract":"&lt;p&gt;Organized by the International Society for Advancement of Cytometry (ISAC), the CYTO conference is one of the most important events for everyone interested in cytometry and quantitative single-cell analysis. It is an annual gathering of cytometry experts and novices in the field, all with a passion for cytometry. This meeting is an opportunity to learn exciting, cutting-edge research directly from the source by attending the Frontiers and State-of-the-Art lectures, research and technology sessions, and Scientific Tutorials.&lt;/p&gt;&lt;p&gt;CYTO conferences are also the premier live forum for discussing current and emerging challenges in cytometry and associated sciences through an interactive workshop format. Workshops attract considerable attention within and outside the cytometry community as they address where we stand in specific fields of interest to cytometrists, how current issues with the evolving technologies within the field can be addressed and solved, and what future areas for development exist. Due to the limited time frame allocated to this format, however, workshops run in parallel, preventing attendees from participating in all sessions of interest. Moreover, those unable to attend the CYTO conference miss the content entirely. Therefore, we continue the tradition of summarizing all workshops to disseminate the information provided and to capture the state-of-the-art view of the community. The primary purpose of creating such a combined summary is to preserve the record of live discussions and main conclusions, propose potential guidelines, and make them available to the broader public.&lt;/p&gt;&lt;p&gt;The publication of workshop summaries and their availability to a global audience not only captures live discussions but also undoubtedly seeds new initiatives to support emerging topics or trends. This “Cyt-Geist,” a play on the German &lt;i&gt;Zeitgeist&lt;/i&gt;, meaning “spirit of the age”, aims to document the defining spirit and collective consciousness of the cytometry field at this moment in time. Just as &lt;i&gt;Zeitgeist&lt;/i&gt; captures the prevailing ideas and beliefs of an era, &lt;i&gt;Cyt-Geist&lt;/i&gt; captures the current challenges, innovations, and forward momentum that characterize our community. The joint effort begun in 2018 and continued in 2019 by Kamila Czechowska proved to be a valuable reference [&lt;span&gt;1, 2&lt;/span&gt;]. Building on that spirit, we present summaries from CYTO 2025, held in Denver, Colorado, from May 31 to June 4.&lt;/p&gt;&lt;p&gt;This manuscript serves as a summary report of 15 workshops held at CYTO 2025. We present, in concise form, the current and future challenges in cytometry identified by workshop organizers and participants. The manuscript is organized into three thematic sections: Building the Cytometry Infrastructure of the Future (Standardization, Sharing, and Sustainability in Cytometric Practice); Applied Innovation Across Modalities (Expanding Possibilities: From Fluorescence to Imaging and Automated Annotation); and the People Behind the P","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"109 1","pages":"5-41"},"PeriodicalIF":2.1,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cytoa.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145862299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OMIP-119: A 36-Color Full-Spectrum Flow Cytometry Panel for Deep Immunophenotyping of Peripheral Blood and Ex Vivo Expanded Human T Cells. OMIP-119:用于外周血和体外扩增的人T细胞深度免疫表型的36色全光谱流式细胞仪面板。
IF 2.1 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-01 Epub Date: 2025-12-12 DOI: 10.1002/cytoa.70001
Robert J Harris, Benjamin Arkle, Elizabeth Evans, Charles H V Smith, Rebecca Teevan, Natalie Bath

The increasing uptake of adoptive CAR-T and TCR-T cell therapies into clinical practice has intensified the need for robust and detailed immunophenotyping of ex vivo expanded T cells. We have developed and optimized an extended 36-color full-spectrum flow cytometry panel suitable for in-depth immunophenotyping of both peripheral blood and ex vivo expanded human T cells. Our panel allows for analysis of CD4+ and CD8+ memory subpopulations (Tn/Tscm, Tcm, Tem, and Temra), Treg subsets (CD45RA+ and CD39+), and helper T cell subsets (Tfh, Th1, Th2, and Th17). Intracellular staining facilitates the evaluation of functional markers granzyme B (cytotoxicity) and Ki-67 (proliferation). Our panel allows detailed investigation of T cell activation using markers carrying a range of expression kinetics. Exhaustion and senescence features, known to correlate with resistance to immunotherapies, can also be thoroughly evaluated. TCR staining with pHLA-dextramer or anti-TCR antibody is also included to allow evaluation of TCR specificity and/or transduction efficiency. A PD-1 receptor occupancy component enables quantification of T cells bound to antibodies from immune checkpoint inhibitor (ICI) therapies. Overall, we have generated a fully optimized and fit-for-purpose extended T cell profiling panel with particular relevance to the field of immunotherapies including ICIs and adoptive T cell therapies.

随着过继性CAR-T和TCR-T细胞疗法越来越多地应用于临床实践,对体外扩增T细胞进行强大而详细的免疫分型的需求日益增加。我们开发并优化了一种扩展的36色全光谱流式细胞仪面板,适用于外周血和体外扩增的人T细胞的深度免疫分型。我们的小组允许分析CD4+和CD8+记忆亚群(Tn/Tscm, Tcm, Tem和Temra), Treg亚群(CD45RA+和CD39+)和辅助T细胞亚群(Tfh, Th1, Th2和Th17)。细胞内染色有助于评估功能标记粒酶B(细胞毒性)和Ki-67(增殖)。我们的小组允许使用携带一系列表达动力学的标记物来详细研究T细胞活化。已知与免疫疗法耐药性相关的疲劳和衰老特征也可以进行彻底评估。还包括用pHLA-dextramer或抗TCR抗体进行TCR染色,以评估TCR特异性和/或转导效率。PD-1受体占用成分能够定量结合免疫检查点抑制剂(ICI)疗法抗体的T细胞。总的来说,我们已经生成了一个完全优化和适合目的的扩展T细胞谱面板,特别与免疫疗法领域相关,包括ICIs和过继性T细胞疗法。
{"title":"OMIP-119: A 36-Color Full-Spectrum Flow Cytometry Panel for Deep Immunophenotyping of Peripheral Blood and Ex Vivo Expanded Human T Cells.","authors":"Robert J Harris, Benjamin Arkle, Elizabeth Evans, Charles H V Smith, Rebecca Teevan, Natalie Bath","doi":"10.1002/cytoa.70001","DOIUrl":"10.1002/cytoa.70001","url":null,"abstract":"<p><p>The increasing uptake of adoptive CAR-T and TCR-T cell therapies into clinical practice has intensified the need for robust and detailed immunophenotyping of ex vivo expanded T cells. We have developed and optimized an extended 36-color full-spectrum flow cytometry panel suitable for in-depth immunophenotyping of both peripheral blood and ex vivo expanded human T cells. Our panel allows for analysis of CD4<sup>+</sup> and CD8<sup>+</sup> memory subpopulations (Tn/Tscm, Tcm, Tem, and Temra), Treg subsets (CD45RA<sup>+</sup> and CD39<sup>+</sup>), and helper T cell subsets (Tfh, Th1, Th2, and Th17). Intracellular staining facilitates the evaluation of functional markers granzyme B (cytotoxicity) and Ki-67 (proliferation). Our panel allows detailed investigation of T cell activation using markers carrying a range of expression kinetics. Exhaustion and senescence features, known to correlate with resistance to immunotherapies, can also be thoroughly evaluated. TCR staining with pHLA-dextramer or anti-TCR antibody is also included to allow evaluation of TCR specificity and/or transduction efficiency. A PD-1 receptor occupancy component enables quantification of T cells bound to antibodies from immune checkpoint inhibitor (ICI) therapies. Overall, we have generated a fully optimized and fit-for-purpose extended T cell profiling panel with particular relevance to the field of immunotherapies including ICIs and adoptive T cell therapies.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":" ","pages":"787-792"},"PeriodicalIF":2.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145741422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection and Validation of Influenza Virus Hemagglutinin Specific, Cross-Reactive, and Heteroclitic B Cells Induced by a Combination Vaccine Adjuvant. 联合疫苗佐剂诱导流感病毒血凝素特异性、交叉反应性和异位B细胞的检测和验证。
IF 2.1 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-01 Epub Date: 2025-12-14 DOI: 10.1002/cytoa.70000
Egest J Pone, Jiin Felgner, Jenny Hernandez-Davies, Johannes S Gach, Tyler Albin, D Huw Davies

Inherent cross-reactivity for shared epitopes is thought to be critical for vaccines, since this is likely the only way in which a vaccine can be anticipatory, similar to immune responses induced by natural infections. However, measuring antigen-specific and cross-reactive B cells remains technically challenging due to low abundance of these cells and background binding. Here, we have assessed different antigen-labeling methods to optimize the measurement of B cell specificity, cross-reactivity, heterocliticity, and average affinity for antigen by flow cytometry. Antigens covalently labeled with NHS ester amine-reactive dyes gave reliable results compared to other antigen labeling methods: namely conjugation of His-tagged antigen on fluorescent streptavidin nanoparticles, or on soluble streptavidin tetramers, bridged via the biomolecular adapter biotin-trisNTA(Ni). Blocking with unlabeled H1 or H7 clearly outcompeted H1- and/or H7-specific cells, indicating that cross-reactive antibodies possess lower affinities compared to the mono-reactive or the rare heteroclitic antibodies. Overall, these studies suggest that evaluating the antigen specificity and breadth of candidate vaccines, including multi-season or universal vaccines, may be best accomplished using flow cytometric quantification of clonally distributed B lineage cells using antigens covalently derivatized with fluorescent dyes, which is also analogous with the standard flow cytometry approach of quantifying antigen biomarkers on cells using fluorescent monoclonal antibodies (mAbs).

共享表位固有的交叉反应性被认为对疫苗至关重要,因为这可能是疫苗具有预警性的唯一途径,类似于由自然感染引起的免疫反应。然而,由于抗原特异性和交叉反应性B细胞的丰度低和背景结合,测量这些细胞在技术上仍然具有挑战性。在这里,我们评估了不同的抗原标记方法,以优化B细胞特异性、交叉反应性、异晶性和对抗原的平均亲和力的测定。与其他抗原标记方法相比,用NHS酯胺活性染料共价标记的抗原提供了可靠的结果:即将his标记的抗原偶联在荧光链亲和素纳米颗粒上,或通过生物分子转接器生物素-三nta (Ni)桥接在可溶性链亲和素四聚体上。未标记的H1或H7阻断明显优于H1和/或H7特异性细胞,表明交叉反应性抗体与单反应性或罕见的异源抗体相比具有较低的亲和力。总的来说,这些研究表明,评估候选疫苗(包括多季疫苗或通用疫苗)的抗原特异性和广度,可能最好使用流式细胞术定量克隆分布的B系细胞,使用荧光染料衍生共价抗原,这也类似于使用荧光单克隆抗体(mab)定量细胞上抗原生物标志物的标准流式细胞术方法。
{"title":"Detection and Validation of Influenza Virus Hemagglutinin Specific, Cross-Reactive, and Heteroclitic B Cells Induced by a Combination Vaccine Adjuvant.","authors":"Egest J Pone, Jiin Felgner, Jenny Hernandez-Davies, Johannes S Gach, Tyler Albin, D Huw Davies","doi":"10.1002/cytoa.70000","DOIUrl":"10.1002/cytoa.70000","url":null,"abstract":"<p><p>Inherent cross-reactivity for shared epitopes is thought to be critical for vaccines, since this is likely the only way in which a vaccine can be anticipatory, similar to immune responses induced by natural infections. However, measuring antigen-specific and cross-reactive B cells remains technically challenging due to low abundance of these cells and background binding. Here, we have assessed different antigen-labeling methods to optimize the measurement of B cell specificity, cross-reactivity, heterocliticity, and average affinity for antigen by flow cytometry. Antigens covalently labeled with NHS ester amine-reactive dyes gave reliable results compared to other antigen labeling methods: namely conjugation of His-tagged antigen on fluorescent streptavidin nanoparticles, or on soluble streptavidin tetramers, bridged via the biomolecular adapter biotin-trisNTA(Ni). Blocking with unlabeled H1 or H7 clearly outcompeted H1- and/or H7-specific cells, indicating that cross-reactive antibodies possess lower affinities compared to the mono-reactive or the rare heteroclitic antibodies. Overall, these studies suggest that evaluating the antigen specificity and breadth of candidate vaccines, including multi-season or universal vaccines, may be best accomplished using flow cytometric quantification of clonally distributed B lineage cells using antigens covalently derivatized with fluorescent dyes, which is also analogous with the standard flow cytometry approach of quantifying antigen biomarkers on cells using fluorescent monoclonal antibodies (mAbs).</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":" ","pages":"817-836"},"PeriodicalIF":2.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145755443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lost in Translation: Harmonizing Terminology and Defining Mathematical Tools for Panel Optimization. 迷失于翻译:协调术语和定义面板优化的数学工具。
IF 2.1 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-01 Epub Date: 2025-12-21 DOI: 10.1002/cyto.a.24972
Bartek Rajwa, Mario Roederer

Spectral flow cytometry has evolved from a contentious idea into a mainstay of high-parameter single-cell analysis, yet its vocabulary (and the statistical reasoning behind it) remains a patchwork of overlapping, sometimes contradictory terms. This position paper highlights the terminological fragmentation and translation gap, and aims to harmonize the field's lexicon while providing a cohesive information-theoretic framework for panel optimization. We expose the limits of popular ad hoc heuristics, matrix condition numbers, and pairwise cosine similarities, and promote stronger surrogates: effective rank and information efficiency, which together capture spectral independence and numerical stability, and the Cramér-Rao lower bound (CRLB) matrix, which directly predicts fluorochrome-specific spreading error. Building on this foundation, we revive the optimal-design criteria: D-optimality maximizes total information; A-optimality minimizes the average parameter variance; E-optimality constrains worst-direction inflation. By aligning precise definitions with actionable design rules, we provide a roadmap for consistent terminology, next-generation panel construction, and objective instrument benchmarking.

光谱流式细胞术已经从一个有争议的想法发展成为高参数单细胞分析的支柱,然而它的词汇(及其背后的统计推理)仍然是重叠的,有时是相互矛盾的术语的拼凑。本文强调了术语碎片化和翻译差距,旨在协调该领域的词汇,同时为面板优化提供一个有凝聚力的信息理论框架。我们揭示了流行的临时启发式、矩阵条件数和两两余弦相似度的局限性,并提出了更强的替代方法:有效秩和信息效率,它们一起捕获光谱独立性和数值稳定性,以及cram - rao下界(CRLB)矩阵,它直接预测荧光色特异性扩散误差。在此基础上,我们恢复了最优设计标准:d -最优性使总信息最大化;a -最优性最小化平均参数方差;e -最优性限制了最坏方向的通胀。通过将精确的定义与可操作的设计规则对齐,我们为一致的术语,下一代面板构建和客观的仪器基准提供了路线图。
{"title":"Lost in Translation: Harmonizing Terminology and Defining Mathematical Tools for Panel Optimization.","authors":"Bartek Rajwa, Mario Roederer","doi":"10.1002/cyto.a.24972","DOIUrl":"10.1002/cyto.a.24972","url":null,"abstract":"<p><p>Spectral flow cytometry has evolved from a contentious idea into a mainstay of high-parameter single-cell analysis, yet its vocabulary (and the statistical reasoning behind it) remains a patchwork of overlapping, sometimes contradictory terms. This position paper highlights the terminological fragmentation and translation gap, and aims to harmonize the field's lexicon while providing a cohesive information-theoretic framework for panel optimization. We expose the limits of popular ad hoc heuristics, matrix condition numbers, and pairwise cosine similarities, and promote stronger surrogates: effective rank and information efficiency, which together capture spectral independence and numerical stability, and the Cramér-Rao lower bound (CRLB) matrix, which directly predicts fluorochrome-specific spreading error. Building on this foundation, we revive the optimal-design criteria: D-optimality maximizes total information; A-optimality minimizes the average parameter variance; E-optimality constrains worst-direction inflation. By aligning precise definitions with actionable design rules, we provide a roadmap for consistent terminology, next-generation panel construction, and objective instrument benchmarking.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":" ","pages":"793-816"},"PeriodicalIF":2.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145803269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Opportunity for ISAC and ICCS to Lead on Universal Cytometry Standards. ISAC和ICCS领导通用细胞术标准的机会。
IF 2.1 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-12-01 Epub Date: 2025-12-22 DOI: 10.1002/cytoa.70003
Marc Sorigue, Jordi Petriz

Flow cytometry, a complex and important methodology, is exacerbating the systemic reproducibility crisis in biological research. Our systematic review of 100 published manuscripts on PD-1 flow cytometry data found systemic deficiencies in the clarity and completeness of methodological documentation across top-tier journals. We urgently request that the International Society for Advancement of Cytometry (ISAC) and dedicated journal editors from the scientific publishing community lead a global initiative mandating a unique common standard for all submissions (MIFlowCyt). This adoption is critical for enforcing transparency, enabling rigorous peer review, and fundamentally strengthening the scientific integrity of published cytometry data.

流式细胞术是一种复杂而重要的方法,它正在加剧生物学研究中的系统可重复性危机。我们系统回顾了100篇关于PD-1流式细胞术数据的已发表手稿,发现顶级期刊在方法学文献的清晰度和完整性方面存在系统性缺陷。我们迫切要求国际细胞术进步协会(ISAC)和科学出版界的专业期刊编辑领导一项全球倡议,要求为所有提交的论文制定一个独特的通用标准(MIFlowCyt)。这种采用对于加强透明度、实现严格的同行评议以及从根本上加强已发表的细胞术数据的科学完整性至关重要。
{"title":"An Opportunity for ISAC and ICCS to Lead on Universal Cytometry Standards.","authors":"Marc Sorigue, Jordi Petriz","doi":"10.1002/cytoa.70003","DOIUrl":"10.1002/cytoa.70003","url":null,"abstract":"<p><p>Flow cytometry, a complex and important methodology, is exacerbating the systemic reproducibility crisis in biological research. Our systematic review of 100 published manuscripts on PD-1 flow cytometry data found systemic deficiencies in the clarity and completeness of methodological documentation across top-tier journals. We urgently request that the International Society for Advancement of Cytometry (ISAC) and dedicated journal editors from the scientific publishing community lead a global initiative mandating a unique common standard for all submissions (MIFlowCyt). This adoption is critical for enforcing transparency, enabling rigorous peer review, and fundamentally strengthening the scientific integrity of published cytometry data.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":" ","pages":"785-786"},"PeriodicalIF":2.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145803244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cytometry Part A
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1