Li Li, Nida El Islem Guissi, Yusong Peng, Shuming Nie, Huiming Cai, Christopher J. Butch, Yiqing Wang
{"title":"Butterfly oscillation of an ICG dimer enables ultra-high photothermal conversion efficiency","authors":"Li Li, Nida El Islem Guissi, Yusong Peng, Shuming Nie, Huiming Cai, Christopher J. Butch, Yiqing Wang","doi":"10.1016/j.xcrp.2023.101748","DOIUrl":null,"url":null,"abstract":"<p>The development of photothermal therapy (PTT) as a cancer therapy has been hampered by low photothermal conversion efficiency (PTCE), which reduces its efficacy for this application. Herein, we report the investigation of the photothermal properties of ICG-II, the dimer of indocyanine green (ICG), and show it to have an unexpectedly high PTCE of 95.6%. Based on density functional theory calculations, we attribute the high PTCE of ICG-II to changes in the relative energy levels of the occupied orbitals and a constrained “butterfly” oscillation around the dimer bond that facilitates nonradiative deexcitation. Through <em>in vitro</em> study, we demonstrate ICG-II to be highly biocompatible and stable to irradiation and temperatures needed for photothermal therapy. <em>In vivo</em> experiments show that direct injection of ICG-II followed by 2 min near-infrared (NIR) irradiation can completely eliminate xenograft tumors in mice. This work demonstrates that ICG-II is an attractive candidate for further preclinical development of photothermal agents and serves as a prototype for a class of rotationally constrained molecular rotors for PTT and other photochemical applications.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"10 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101748","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of photothermal therapy (PTT) as a cancer therapy has been hampered by low photothermal conversion efficiency (PTCE), which reduces its efficacy for this application. Herein, we report the investigation of the photothermal properties of ICG-II, the dimer of indocyanine green (ICG), and show it to have an unexpectedly high PTCE of 95.6%. Based on density functional theory calculations, we attribute the high PTCE of ICG-II to changes in the relative energy levels of the occupied orbitals and a constrained “butterfly” oscillation around the dimer bond that facilitates nonradiative deexcitation. Through in vitro study, we demonstrate ICG-II to be highly biocompatible and stable to irradiation and temperatures needed for photothermal therapy. In vivo experiments show that direct injection of ICG-II followed by 2 min near-infrared (NIR) irradiation can completely eliminate xenograft tumors in mice. This work demonstrates that ICG-II is an attractive candidate for further preclinical development of photothermal agents and serves as a prototype for a class of rotationally constrained molecular rotors for PTT and other photochemical applications.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.