Orbital pacing and secular evolution of lake-level changes reconstructed by sedimentary noise modeling during the Early Jurassic icehouses-(super)greenhouses
Meng Li, Xin Li, Stephen P. Hesselbo, Mingjie Li, Wenjin Liu, Wei Wu, Jienan Pan, Ruizhen Gao
{"title":"Orbital pacing and secular evolution of lake-level changes reconstructed by sedimentary noise modeling during the Early Jurassic icehouses-(super)greenhouses","authors":"Meng Li, Xin Li, Stephen P. Hesselbo, Mingjie Li, Wenjin Liu, Wei Wu, Jienan Pan, Ruizhen Gao","doi":"10.1007/s11430-023-1187-8","DOIUrl":null,"url":null,"abstract":"<p>Lake-level changes can significantly affect paleoenvironmental evolution, resource occurrence, terrestrial carbon budget, and biodiversity in continental basins. Climate is one of the most critical factors controlling lake-level changes. Paleoclimate of the Early Jurassic has been evidenced by oscillating icehouses to (super) greenhouses with interrupted intermittent extreme climatic events (hyperthermal and cooling), e.g., the Toarcian oceanic anoxic event (~183 Ma) and the late Pliensbachian cooling event (~185 Ma). Lake-level evolution and hydrologic cycling on Earth’s surface during the Early Jurassic icehouses-to-(super)greenhouses are thus far poorly understood due to a lack of continuous high-resolution nonmarine evidence. Here we present a super-long nonmarine lake level record for this pivotal interval from the early Pliensbachian to Toarcian by sedimentary noise modeling, and construct a 16.7-Myr-long astronomical time scale (174.2 Ma to 190.9 Ma) based on cyclostratigraphy analysis of rock color datasets (CIE b*) of the Qaidam Basin. Our results document lake-level oscillations on a 5-to 10-million-year (Myr) scale which shows a pronounced correlation with long-term climate variation and extreme climatic events, and 1- to 2.5-Myr-scale lake-level changes that are prominently paced by the 2.4-Myr long-eccentricity forcing and the 1.2-Myr obliquity forcing. At the Pliensbachian Stage, the 1.2-Myr-scale lake-level changes are in phase with the coeval sea-level variations. Orbitally forced growth and decay of the ephemeral or permanent ice sheets in polar regions are interpreted to control the synchronous ups-and-downs of continental lake level and global sea level. However, during the Toarcian ice-free greenhouses to (super)greenhouses, the 1.2-Myr-scale lake-level variations show an anti-phase relationship with global sea level, indicating a ‘seesaw’ interaction between continental reservoirs (lakes and groundwater) and global oceans. The 2.4-Myr long-eccentricity cycles mainly regulate variations of lake level and sea level by controlling the growth and decay of small-scale continental ice sheets, which is especially notable during the Pliensbachian Stage. These findings indicate a remarkable transition of hydrological cycling pattern during the Pliensbachian-Toarcian icehouses to (super)greenhouses, which provides new perspectives and evidence for investigating the hypothesis of global sea-level changes (e.g., glacio-eustasy and aquifer-eustasy) and long-period astronomical forcing in nonmarine stratigraphy.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":"19 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11430-023-1187-8","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lake-level changes can significantly affect paleoenvironmental evolution, resource occurrence, terrestrial carbon budget, and biodiversity in continental basins. Climate is one of the most critical factors controlling lake-level changes. Paleoclimate of the Early Jurassic has been evidenced by oscillating icehouses to (super) greenhouses with interrupted intermittent extreme climatic events (hyperthermal and cooling), e.g., the Toarcian oceanic anoxic event (~183 Ma) and the late Pliensbachian cooling event (~185 Ma). Lake-level evolution and hydrologic cycling on Earth’s surface during the Early Jurassic icehouses-to-(super)greenhouses are thus far poorly understood due to a lack of continuous high-resolution nonmarine evidence. Here we present a super-long nonmarine lake level record for this pivotal interval from the early Pliensbachian to Toarcian by sedimentary noise modeling, and construct a 16.7-Myr-long astronomical time scale (174.2 Ma to 190.9 Ma) based on cyclostratigraphy analysis of rock color datasets (CIE b*) of the Qaidam Basin. Our results document lake-level oscillations on a 5-to 10-million-year (Myr) scale which shows a pronounced correlation with long-term climate variation and extreme climatic events, and 1- to 2.5-Myr-scale lake-level changes that are prominently paced by the 2.4-Myr long-eccentricity forcing and the 1.2-Myr obliquity forcing. At the Pliensbachian Stage, the 1.2-Myr-scale lake-level changes are in phase with the coeval sea-level variations. Orbitally forced growth and decay of the ephemeral or permanent ice sheets in polar regions are interpreted to control the synchronous ups-and-downs of continental lake level and global sea level. However, during the Toarcian ice-free greenhouses to (super)greenhouses, the 1.2-Myr-scale lake-level variations show an anti-phase relationship with global sea level, indicating a ‘seesaw’ interaction between continental reservoirs (lakes and groundwater) and global oceans. The 2.4-Myr long-eccentricity cycles mainly regulate variations of lake level and sea level by controlling the growth and decay of small-scale continental ice sheets, which is especially notable during the Pliensbachian Stage. These findings indicate a remarkable transition of hydrological cycling pattern during the Pliensbachian-Toarcian icehouses to (super)greenhouses, which provides new perspectives and evidence for investigating the hypothesis of global sea-level changes (e.g., glacio-eustasy and aquifer-eustasy) and long-period astronomical forcing in nonmarine stratigraphy.
期刊介绍:
Science China Earth Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.