Impact response and energy absorption of metallic buffer with entangled wire mesh damper

IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Defence Technology(防务技术) Pub Date : 2024-05-01 DOI:10.1016/j.dt.2023.12.008
Chao Zheng , Jun Wu , Mangong Zhang , Xin Xue
{"title":"Impact response and energy absorption of metallic buffer with entangled wire mesh damper","authors":"Chao Zheng ,&nbsp;Jun Wu ,&nbsp;Mangong Zhang ,&nbsp;Xin Xue","doi":"10.1016/j.dt.2023.12.008","DOIUrl":null,"url":null,"abstract":"<div><p>An innovative metallic buffer consisting of series-connected hat-shaped entangled wire mesh damper (EWMD) and parallel springs are proposed in this work to enhance the reliability of engineering equipment. The impact response and the energy dissipation mechanism of hat-shaped EWMD under different quasi-static compression deformations (2–7 mm) and impact heights (100–200 mm) are investigated using experimental and numerical methods. The results demonstrate distinct stages in the quasi-static mechanical characteristics of hat-shaped EWMD, including stiffness softening, negative stiffness, and stiffness hardening. The loss factor gradually increases with increasing compression deformation before entering the stiffness hardening stage. Under impact loads, the hat-shaped EWMD exhibits optimal impact energy absorption when it enters the negative stiffness stage (150 mm), resulting in the best impact isolation effect of metallic buffer. However, the impact energy absorption significantly decreases when hat-shaped EWMD enters the stiffness hardening stage. Interestingly, quasi-static compression analysis after experiencing different impact loads reveals the disappearance of the negative stiffness phenomenon. Moreover, with increasing impact loads, the stiffness hardening point progressively shifts to an earlier stage.</p></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"35 ","pages":"Pages 137-150"},"PeriodicalIF":5.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214914723003318/pdfft?md5=dadfc10e9e669c69640db676d7ac478a&pid=1-s2.0-S2214914723003318-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914723003318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An innovative metallic buffer consisting of series-connected hat-shaped entangled wire mesh damper (EWMD) and parallel springs are proposed in this work to enhance the reliability of engineering equipment. The impact response and the energy dissipation mechanism of hat-shaped EWMD under different quasi-static compression deformations (2–7 mm) and impact heights (100–200 mm) are investigated using experimental and numerical methods. The results demonstrate distinct stages in the quasi-static mechanical characteristics of hat-shaped EWMD, including stiffness softening, negative stiffness, and stiffness hardening. The loss factor gradually increases with increasing compression deformation before entering the stiffness hardening stage. Under impact loads, the hat-shaped EWMD exhibits optimal impact energy absorption when it enters the negative stiffness stage (150 mm), resulting in the best impact isolation effect of metallic buffer. However, the impact energy absorption significantly decreases when hat-shaped EWMD enters the stiffness hardening stage. Interestingly, quasi-static compression analysis after experiencing different impact loads reveals the disappearance of the negative stiffness phenomenon. Moreover, with increasing impact loads, the stiffness hardening point progressively shifts to an earlier stage.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带缠结金属网阻尼器的金属缓冲器的冲击响应和能量吸收
为提高工程设备的可靠性,本文提出了一种由串联帽形缠结金属网阻尼器(EWMD)和平行弹簧组成的创新型金属缓冲器。采用实验和数值方法研究了帽形 EWMD 在不同准静态压缩变形(2-7 毫米)和冲击高度(100-200 毫米)下的冲击响应和能量耗散机制。结果表明,帽形 EWMD 的准静态力学特性经历了不同阶段,包括刚度软化、负刚度和刚度硬化。在进入刚度硬化阶段之前,损失因子随着压缩变形的增加而逐渐增大。在冲击载荷作用下,当进入负刚度阶段(150 毫米)时,帽形 EWMD 表现出最佳的冲击能量吸收能力,使金属缓冲器的冲击隔离效果达到最佳。然而,当帽形 EWMD 进入刚度硬化阶段时,其冲击能量吸收能力明显下降。有趣的是,在经历不同冲击载荷后进行的准静态压缩分析表明,负刚度现象消失了。此外,随着冲击载荷的增加,刚度硬化点也会逐渐提前。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
期刊最新文献
IFC - Editorial Board Analysis model for damage of reinforced bars in RC beams under contact explosion Modelling of internal ballistics of gun systems: A review A tensile wearable SHF antenna with efficient communication in defense beacon technology An isogeometric analysis approach for dynamic response of doubly-curved magneto electro elastic composite shallow shell subjected to blast loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1