Xuxin Chen , Fan Wang , Jian Tang , Jiguang Meng, Zhihai Han
{"title":"Paralemmin-3 augments lipopolysaccharide-induced acute lung injury with M1 macrophage polarization via the notch signaling pathway","authors":"Xuxin Chen , Fan Wang , Jian Tang , Jiguang Meng, Zhihai Han","doi":"10.1016/j.resp.2023.104203","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Acute lung injury (ALI) involves severe lung damage and respiratory failure, which are accompanied by alveolar macrophage (AM) activation. The aim of this article is to verify the influence of paralemmin-3 (PALM3) on alveolar macrophage (AM) polarization in ALI and the underlying mechanism of action.</p></div><div><h3>Methods</h3><p>An ALI rat model was established by successive lipopolysaccharide (LPS) inhalations. The influence of PALM3 on the survival rate, severity of lung injury, and macrophage polarization was analyzed. Furthermore, we explored the underlying mechanism of PALM3 in regulating macrophage polarization.</p></div><div><h3>Results</h3><p>PALM3 overexpression increased mortality of ALI rats, augmented lung pathological damage, and promoted AM polarization toward M1 cells. Conversely, PALM3 knockdown had the opposite effects. Mechanistically, PALM3 might promote M1 polarization by acting as an adaptor to facilitate transduction of Notch signaling.</p></div><div><h3>Conclusion</h3><p>PALM3 aggravates lung injury and induces macrophage polarization toward M1 cells by activating the Notch signaling pathway in LPS-induced ALI, which may shed light on ALI/ARDS treatments.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"320 ","pages":"Article 104203"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S156990482300191X/pdfft?md5=116d5dd81d3a59b0c50605f74dbb0cea&pid=1-s2.0-S156990482300191X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156990482300191X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Acute lung injury (ALI) involves severe lung damage and respiratory failure, which are accompanied by alveolar macrophage (AM) activation. The aim of this article is to verify the influence of paralemmin-3 (PALM3) on alveolar macrophage (AM) polarization in ALI and the underlying mechanism of action.
Methods
An ALI rat model was established by successive lipopolysaccharide (LPS) inhalations. The influence of PALM3 on the survival rate, severity of lung injury, and macrophage polarization was analyzed. Furthermore, we explored the underlying mechanism of PALM3 in regulating macrophage polarization.
Results
PALM3 overexpression increased mortality of ALI rats, augmented lung pathological damage, and promoted AM polarization toward M1 cells. Conversely, PALM3 knockdown had the opposite effects. Mechanistically, PALM3 might promote M1 polarization by acting as an adaptor to facilitate transduction of Notch signaling.
Conclusion
PALM3 aggravates lung injury and induces macrophage polarization toward M1 cells by activating the Notch signaling pathway in LPS-induced ALI, which may shed light on ALI/ARDS treatments.
期刊介绍:
Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense.
Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as:
-Mechanics of breathing-
Gas exchange and acid-base balance-
Respiration at rest and exercise-
Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen-
Embryonic and adult respiration-
Comparative respiratory physiology.
Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.