Paralemmin-3 augments lipopolysaccharide-induced acute lung injury with M1 macrophage polarization via the notch signaling pathway

IF 1.9 4区 医学 Q3 PHYSIOLOGY Respiratory Physiology & Neurobiology Pub Date : 2023-12-14 DOI:10.1016/j.resp.2023.104203
Xuxin Chen , Fan Wang , Jian Tang , Jiguang Meng, Zhihai Han
{"title":"Paralemmin-3 augments lipopolysaccharide-induced acute lung injury with M1 macrophage polarization via the notch signaling pathway","authors":"Xuxin Chen ,&nbsp;Fan Wang ,&nbsp;Jian Tang ,&nbsp;Jiguang Meng,&nbsp;Zhihai Han","doi":"10.1016/j.resp.2023.104203","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Acute lung injury (ALI) involves severe lung damage and respiratory failure, which are accompanied by alveolar macrophage (AM) activation. The aim of this article is to verify the influence of paralemmin-3 (PALM3) on alveolar macrophage (AM) polarization in ALI and the underlying mechanism of action.</p></div><div><h3>Methods</h3><p>An ALI rat model was established by successive lipopolysaccharide (LPS) inhalations. The influence of PALM3 on the survival rate, severity of lung injury, and macrophage polarization was analyzed. Furthermore, we explored the underlying mechanism of PALM3 in regulating macrophage polarization.</p></div><div><h3>Results</h3><p>PALM3 overexpression increased mortality of ALI rats, augmented lung pathological damage, and promoted AM polarization toward M1 cells. Conversely, PALM3 knockdown had the opposite effects. Mechanistically, PALM3 might promote M1 polarization by acting as an adaptor to facilitate transduction of Notch signaling.</p></div><div><h3>Conclusion</h3><p>PALM3 aggravates lung injury and induces macrophage polarization toward M1 cells by activating the Notch signaling pathway in LPS-induced ALI, which may shed light on ALI/ARDS treatments.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"320 ","pages":"Article 104203"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S156990482300191X/pdfft?md5=116d5dd81d3a59b0c50605f74dbb0cea&pid=1-s2.0-S156990482300191X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156990482300191X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Acute lung injury (ALI) involves severe lung damage and respiratory failure, which are accompanied by alveolar macrophage (AM) activation. The aim of this article is to verify the influence of paralemmin-3 (PALM3) on alveolar macrophage (AM) polarization in ALI and the underlying mechanism of action.

Methods

An ALI rat model was established by successive lipopolysaccharide (LPS) inhalations. The influence of PALM3 on the survival rate, severity of lung injury, and macrophage polarization was analyzed. Furthermore, we explored the underlying mechanism of PALM3 in regulating macrophage polarization.

Results

PALM3 overexpression increased mortality of ALI rats, augmented lung pathological damage, and promoted AM polarization toward M1 cells. Conversely, PALM3 knockdown had the opposite effects. Mechanistically, PALM3 might promote M1 polarization by acting as an adaptor to facilitate transduction of Notch signaling.

Conclusion

PALM3 aggravates lung injury and induces macrophage polarization toward M1 cells by activating the Notch signaling pathway in LPS-induced ALI, which may shed light on ALI/ARDS treatments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Paralemmin-3 通过缺口信号通路增强脂多糖诱导的急性肺损伤与 M1 巨噬细胞极化作用
背景急性肺损伤(ALI)包括严重的肺损伤和呼吸衰竭,并伴随着肺泡巨噬细胞(AM)的活化。方法通过连续吸入脂多糖(LPS)建立 ALI 大鼠模型。分析了 PALM3 对大鼠存活率、肺损伤严重程度和巨噬细胞极化的影响。结果PALM3过表达会增加ALI大鼠的死亡率,加重肺部病理损伤,并促进AM向M1细胞极化。相反,PALM3 基因敲除则会产生相反的效果。结论在LPS诱导的ALI中,PALM3通过激活Notch信号通路加重肺损伤并诱导巨噬细胞向M1细胞极化,这可能对ALI/ARDS的治疗有所启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
8.70%
发文量
104
审稿时长
54 days
期刊介绍: Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense. Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as: -Mechanics of breathing- Gas exchange and acid-base balance- Respiration at rest and exercise- Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen- Embryonic and adult respiration- Comparative respiratory physiology. Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.
期刊最新文献
TRPA1 contributes to respiratory depression from tobacco aerosol. THE ACUTE EFFECT OF BILATERAL CATHODIC TRANSCRANIAL DIRECT CURRENT STIMULATION ON RESPIRATORY MUSCLE STRENGTH AND ENDURANCE. Glycolytic metabolism modulation on spinal neuroinflammation and vital functions following cervical spinal cord injury. Impact of microbial diversity on inflammatory cytokines and respiratory pattern measured in whole-body plethysmography in guinea pig models. Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1