Hidefumi Takahashi, Tomohiro Sasaki, Akitoshi Nakano, Kazuto Akiba, Masayuki Takahashi, Alex H. Mayo, Masaho Onose, Tatsuo C. Kobayashi, Shintaro Ishiwata
{"title":"Superconductivity in a ferroelectric-like topological semimetal SrAuBi","authors":"Hidefumi Takahashi, Tomohiro Sasaki, Akitoshi Nakano, Kazuto Akiba, Masayuki Takahashi, Alex H. Mayo, Masaho Onose, Tatsuo C. Kobayashi, Shintaro Ishiwata","doi":"10.1038/s41535-023-00612-4","DOIUrl":null,"url":null,"abstract":"<p>Given the rarity of metallic systems that exhibit ferroelectric-like transitions, it is apparently challenging to find a system that simultaneously possesses superconductivity and ferroelectric-like structural instability. Here, we report the observation of superconductivity at 2.4 K in a layered semimetal SrAuBi characterized by strong spin–orbit coupling (SOC) and ferroelectric-like lattice distortion. Single crystals of SrAuBi have been successfully synthesized and found to show a polar-nonpolar structure transition at 214 K, which is associated with the buckling of Au-Bi honeycomb lattice. On the basis of the band calculations considering SOC, we found significant Rashba-type spin splitting and symmetry-protected multiple Dirac points near the Fermi level. We believe that this discovery opens up new possibilities of pursuing exotic superconducting states associated with the semimetallic band structure without space inversion symmetry and the topological surface state with the strong SOC.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"46 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-023-00612-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Given the rarity of metallic systems that exhibit ferroelectric-like transitions, it is apparently challenging to find a system that simultaneously possesses superconductivity and ferroelectric-like structural instability. Here, we report the observation of superconductivity at 2.4 K in a layered semimetal SrAuBi characterized by strong spin–orbit coupling (SOC) and ferroelectric-like lattice distortion. Single crystals of SrAuBi have been successfully synthesized and found to show a polar-nonpolar structure transition at 214 K, which is associated with the buckling of Au-Bi honeycomb lattice. On the basis of the band calculations considering SOC, we found significant Rashba-type spin splitting and symmetry-protected multiple Dirac points near the Fermi level. We believe that this discovery opens up new possibilities of pursuing exotic superconducting states associated with the semimetallic band structure without space inversion symmetry and the topological surface state with the strong SOC.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.