FLT3 signaling augments macrophage production from human pluripotent stem cells.

IF 4.8 4区 医学 Q2 IMMUNOLOGY International immunology Pub Date : 2024-02-21 DOI:10.1093/intimm/dxad047
Kenji Kitajima, Minako Shingai, Hikaru Ando, Takahiko Hara
{"title":"FLT3 signaling augments macrophage production from human pluripotent stem cells.","authors":"Kenji Kitajima, Minako Shingai, Hikaru Ando, Takahiko Hara","doi":"10.1093/intimm/dxad047","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in cell engineering technologies enable immune cells to be utilized for adoptive cell transfer (ACT) immunotherapy against cancers. Macrophages have the potential to directly and indirectly exterminate cancers and are therefore an attractive option for therapies. To develop new ACT therapies using macrophages, a great number of macrophages are required. Human induced pluripotent stem cells (iPSCs) are expected to be a source of macrophages; therefore, a system to efficiently produce macrophages from human iPSCs is needed. Here, we demonstrated that human iPSCs were robustly differentiated into macrophages by enforced FMS-like tyrosine kinase-3 (FLT3) signaling via the introduction of exogenous FLT3 into iPSCs and the addition of its ligand FLT3L to the macrophage induction culture. These iPSC-derived macrophages were identical to those obtained by standard differentiation induction methods. Thus, our novel system enables the preparation of scalable macrophages from human iPSCs. We believe that this system will be useful to develop a novel ACT therapy using macrophages.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"99-110"},"PeriodicalIF":4.8000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/intimm/dxad047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in cell engineering technologies enable immune cells to be utilized for adoptive cell transfer (ACT) immunotherapy against cancers. Macrophages have the potential to directly and indirectly exterminate cancers and are therefore an attractive option for therapies. To develop new ACT therapies using macrophages, a great number of macrophages are required. Human induced pluripotent stem cells (iPSCs) are expected to be a source of macrophages; therefore, a system to efficiently produce macrophages from human iPSCs is needed. Here, we demonstrated that human iPSCs were robustly differentiated into macrophages by enforced FMS-like tyrosine kinase-3 (FLT3) signaling via the introduction of exogenous FLT3 into iPSCs and the addition of its ligand FLT3L to the macrophage induction culture. These iPSC-derived macrophages were identical to those obtained by standard differentiation induction methods. Thus, our novel system enables the preparation of scalable macrophages from human iPSCs. We believe that this system will be useful to develop a novel ACT therapy using macrophages.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FLT3信号增强了人类多能干细胞产生巨噬细胞的能力。
细胞工程技术的最新进展使免疫细胞可用于针对癌症的采纳性细胞转移(ACT)免疫疗法。巨噬细胞具有直接或间接消灭癌症的潜力,因此是一种极具吸引力的疗法。要利用巨噬细胞开发新的 ACT 疗法,需要大量的巨噬细胞。人类诱导多能干细胞(iPSCs)有望成为巨噬细胞的来源;因此,需要一种能从人类 iPSCs 高效生产巨噬细胞的系统。在这里,我们证明了通过向iPSCs中引入外源FLT3,并在巨噬细胞诱导培养中加入其配体FLT3L,强化FMS样酪氨酸激酶-3(FLT3)信号,人iPSCs能稳健地分化成巨噬细胞。这些 iPSC 衍生的巨噬细胞与通过标准分化诱导方法获得的巨噬细胞完全相同。因此,我们的新系统可以从人类 iPSCs 制备可扩展的巨噬细胞。我们相信,该系统将有助于利用巨噬细胞开发新型 ACT 疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International immunology
International immunology 医学-免疫学
CiteScore
9.30
自引率
2.30%
发文量
51
审稿时长
6-12 weeks
期刊介绍: International Immunology is an online only (from Jan 2018) journal that publishes basic research and clinical studies from all areas of immunology and includes research conducted in laboratories throughout the world.
期刊最新文献
γδ intraepithelial lymphocytes acquire the ability to produce IFN-γ in a different time course than αβ intraepithelial lymphocytes. The tryptophan metabolic pathway of the microbiome and host cells in health and disease. Regulation of memory CD4+ T-cell generation by intrinsic and extrinsic IL-27 signaling during malaria infection. Supersulphides suppress type-I and type-II interferon responses by blocking JAK/STAT signalling in macrophages. Synchronized development of thymic eosinophils and thymocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1