Inheritance of environment-induced phenotypic changes through epigenetic mechanisms.

IF 4.8 Q1 GENETICS & HEREDITY Environmental Epigenetics Pub Date : 2023-11-22 eCollection Date: 2023-01-01 DOI:10.1093/eep/dvad008
Yukiko Tando, Yasuhisa Matsui
{"title":"Inheritance of environment-induced phenotypic changes through epigenetic mechanisms.","authors":"Yukiko Tando, Yasuhisa Matsui","doi":"10.1093/eep/dvad008","DOIUrl":null,"url":null,"abstract":"<p><p>Growing evidence suggests that epigenetic changes through various parental environmental factors alter the phenotypes of descendants in various organisms. Environmental factors, including exposure to chemicals, stress and abnormal nutrition, affect the epigenome in parental germ cells by different epigenetic mechanisms, such as DNA methylation, histone modification as well as small RNAs via metabolites. Some current remaining questions are the causal relationship between environment-induced epigenetic changes in germ cells and altered phenotypes of descendants, and the molecular basis of how the abnormal epigenetic changes escape reprogramming in germ cells. In this review, we introduce representative examples of intergenerational and transgenerational inheritance of phenotypic changes through parental environmental factors and the accompanied epigenetic and metabolic changes, with a focus on animal species. We also discuss the molecular mechanisms of epigenomic inheritance and their possible biological significance.</p>","PeriodicalId":11774,"journal":{"name":"Environmental Epigenetics","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10719065/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Epigenetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/eep/dvad008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Growing evidence suggests that epigenetic changes through various parental environmental factors alter the phenotypes of descendants in various organisms. Environmental factors, including exposure to chemicals, stress and abnormal nutrition, affect the epigenome in parental germ cells by different epigenetic mechanisms, such as DNA methylation, histone modification as well as small RNAs via metabolites. Some current remaining questions are the causal relationship between environment-induced epigenetic changes in germ cells and altered phenotypes of descendants, and the molecular basis of how the abnormal epigenetic changes escape reprogramming in germ cells. In this review, we introduce representative examples of intergenerational and transgenerational inheritance of phenotypic changes through parental environmental factors and the accompanied epigenetic and metabolic changes, with a focus on animal species. We also discuss the molecular mechanisms of epigenomic inheritance and their possible biological significance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过表观遗传机制遗传环境诱导的表型变化。
越来越多的证据表明,表观遗传变化通过各种亲代环境因素改变了各种生物后代的表型。环境因素,包括暴露于化学物质、压力和异常营养,通过不同的表观遗传机制影响亲代生殖细胞的表观基因组,如DNA甲基化、组蛋白修饰以及通过代谢物产生的小RNA。目前尚存在的一些问题是环境诱导的生殖细胞表观遗传变化与后代表型改变之间的因果关系,以及异常表观遗传变化如何逃脱生殖细胞重编程的分子基础。在这篇综述中,我们将以动物物种为重点,介绍表型变化通过亲代环境因素以及伴随的表观遗传和代谢变化而产生的代际遗传和跨代遗传的代表性实例。我们还讨论了表观遗传的分子机制及其可能的生物学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Epigenetics
Environmental Epigenetics GENETICS & HEREDITY-
CiteScore
6.50
自引率
5.30%
发文量
0
审稿时长
17 weeks
期刊最新文献
Correction to: To live or let die? Epigenetic adaptations to climate change-a review. Bronchial cell epigenetic aging in a human experimental study of short-term diesel and ozone exposures. Epigenetic transgenerational inheritance of toxicant exposure-specific non-coding RNA in sperm. Environmental conditions elicit a slow but enduring response of histone post-translational modifications in Mozambique tilapia. Impaired energy expenditure following exposure to either DDT or DDE in mice may be mediated by DNA methylation changes in brown adipose.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1