Polydopamine modification of polydimethylsiloxane for multifunctional biomaterials: Immobilization and stability of albumin and fetuin-A on modified surfaces.
Jie Li, Leah N Barlow, Miguel Martinez Santos, Kyla N Sask
{"title":"Polydopamine modification of polydimethylsiloxane for multifunctional biomaterials: Immobilization and stability of albumin and fetuin-A on modified surfaces.","authors":"Jie Li, Leah N Barlow, Miguel Martinez Santos, Kyla N Sask","doi":"10.1116/6.0003078","DOIUrl":null,"url":null,"abstract":"<p><p>The surface of polydimethylsiloxane (PDMS) can be modified to immobilize proteins; however, most existing approaches are limited to complex reactions and achieving multifunctional modifications is challenging. This work applies a simple technique to modify PDMS using polydopamine (PDA) and investigates immobilization of multiple proteins. The surfaces were characterized in detail and stability was assessed, demonstrating that in a buffer solution, PDA modification was maintained without an effect on surface properties. Bovine serum albumin (BSA) and bovine fetuin-A (Fet-A) were used as model biomolecules for simultaneous or sequential immobilization and to understand their use for surface backfilling and functionalization. Based on 125I radiolabeling, amounts of BSA and Fet-A on PDA were determined to be close to double that were obtained on control PDMS surfaces. Following elution with sodium dodecyl sulfate, around 67% of BSA and 63% of Fet-A were retained on the surface. The amount of immobilized protein was influenced by the process (simultaneous or sequential) and surface affinity of the proteins. With simultaneous modification, a balanced level of both proteins could be achieved, whereas with the sequential process, the initially immobilized protein was more strongly attached. After incubation with plasma and fetal bovine serum, the PDA-modified surfaces maintained over 90% of the proteins immobilized. This demonstrates that the biological environments also play an important role in the binding and stability of conjugated proteins. This combination of PDA and surface immobilization methods provides fundamental knowledge for tailoring multifunctional PDMS-based biomaterials with applications in cell-material interactions, biosensing, and medical devices.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 6","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0003078","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The surface of polydimethylsiloxane (PDMS) can be modified to immobilize proteins; however, most existing approaches are limited to complex reactions and achieving multifunctional modifications is challenging. This work applies a simple technique to modify PDMS using polydopamine (PDA) and investigates immobilization of multiple proteins. The surfaces were characterized in detail and stability was assessed, demonstrating that in a buffer solution, PDA modification was maintained without an effect on surface properties. Bovine serum albumin (BSA) and bovine fetuin-A (Fet-A) were used as model biomolecules for simultaneous or sequential immobilization and to understand their use for surface backfilling and functionalization. Based on 125I radiolabeling, amounts of BSA and Fet-A on PDA were determined to be close to double that were obtained on control PDMS surfaces. Following elution with sodium dodecyl sulfate, around 67% of BSA and 63% of Fet-A were retained on the surface. The amount of immobilized protein was influenced by the process (simultaneous or sequential) and surface affinity of the proteins. With simultaneous modification, a balanced level of both proteins could be achieved, whereas with the sequential process, the initially immobilized protein was more strongly attached. After incubation with plasma and fetal bovine serum, the PDA-modified surfaces maintained over 90% of the proteins immobilized. This demonstrates that the biological environments also play an important role in the binding and stability of conjugated proteins. This combination of PDA and surface immobilization methods provides fundamental knowledge for tailoring multifunctional PDMS-based biomaterials with applications in cell-material interactions, biosensing, and medical devices.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.