Photostimulation of lymphatic clearance of β-amyloid from mouse brain: a new strategy for the therapy of Alzheimer's disease.

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Frontiers of Optoelectronics Pub Date : 2023-12-14 DOI:10.1007/s12200-023-00099-8
Dongyu Li, Hao Lin, Silin Sun, Shaojun Liu, Zhang Liu, Yuening He, Jingtan Zhu, Jianyi Xu, Oxana Semyachkina-Glushkovskaya, Tingting Yu, Dan Zhu
{"title":"Photostimulation of lymphatic clearance of β-amyloid from mouse brain: a new strategy for the therapy of Alzheimer's disease.","authors":"Dongyu Li, Hao Lin, Silin Sun, Shaojun Liu, Zhang Liu, Yuening He, Jingtan Zhu, Jianyi Xu, Oxana Semyachkina-Glushkovskaya, Tingting Yu, Dan Zhu","doi":"10.1007/s12200-023-00099-8","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is an age-related neurodegenerative disorder that poses a significant burden on socio-economic and healthcare systems worldwide. However, the currently available therapy of AD is limited, and new strategies are needed to enhance the clearance of β-amyloid (Aβ) protein and improve cognitive function. Photobiomodulation (PBM) is a non-invasive and effective therapeutic method that has shown promise in treating various brain diseases. Here, we demonstrate that 1267-nm PBM significantly alleviates cognitive decline in the 5xFAD mouse model of AD and is safe as it does not induce a significant increase in cortical temperature. Moreover, with the combination of 3D tissue optical clearing imaging and automatic brain region segmentation, we show that PBM-mediated reductions of Aβ plaques in different subregions of prefrontal cortex and the hippocampus are different. The PBM-induced lymphatic clearance of Aβ from the brain is associated with improvement of memory and cognitive functions in 5xFAD mice. Our results suggest that the modulation of meningeal lymphatic vessels (MLVs) should play an important role in promoting Aβ clearance. Collectively, this pilot study demonstrates that PBM can safely accelerate lymphatic clearance of Aβ from the brain of 5xFAD mice, promoting improvement of neurocognitive status of AD animals suggesting that PBM can be an effective and bedside therapy for AD.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721782/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-023-00099-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is an age-related neurodegenerative disorder that poses a significant burden on socio-economic and healthcare systems worldwide. However, the currently available therapy of AD is limited, and new strategies are needed to enhance the clearance of β-amyloid (Aβ) protein and improve cognitive function. Photobiomodulation (PBM) is a non-invasive and effective therapeutic method that has shown promise in treating various brain diseases. Here, we demonstrate that 1267-nm PBM significantly alleviates cognitive decline in the 5xFAD mouse model of AD and is safe as it does not induce a significant increase in cortical temperature. Moreover, with the combination of 3D tissue optical clearing imaging and automatic brain region segmentation, we show that PBM-mediated reductions of Aβ plaques in different subregions of prefrontal cortex and the hippocampus are different. The PBM-induced lymphatic clearance of Aβ from the brain is associated with improvement of memory and cognitive functions in 5xFAD mice. Our results suggest that the modulation of meningeal lymphatic vessels (MLVs) should play an important role in promoting Aβ clearance. Collectively, this pilot study demonstrates that PBM can safely accelerate lymphatic clearance of Aβ from the brain of 5xFAD mice, promoting improvement of neurocognitive status of AD animals suggesting that PBM can be an effective and bedside therapy for AD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光刺激小鼠大脑中β-淀粉样蛋白的淋巴清除:治疗阿尔茨海默病的新策略。
阿尔茨海默病(AD)是一种与年龄相关的神经退行性疾病,给全世界的社会经济和医疗保健系统带来了沉重负担。然而,目前治疗阿尔茨海默病的方法有限,需要新的策略来提高β淀粉样蛋白(Aβ)的清除率并改善认知功能。光生物调节(PBM)是一种非侵入性的有效治疗方法,在治疗各种脑部疾病方面已显示出前景。在这里,我们证明了 1267 波长的光生物调控能明显缓解 5xFAD AD 小鼠模型的认知功能衰退,而且不会引起皮层温度显著升高,因此是安全的。此外,结合三维组织光学清除成像和自动脑区分割,我们发现 PBM 介导的 Aβ 斑块在前额叶皮层和海马的不同亚区的减少是不同的。PBM 诱导的脑内 Aβ 淋巴清除与 5xFAD 小鼠记忆和认知功能的改善有关。我们的研究结果表明,脑膜淋巴管(MLV)的调节在促进 Aβ 清除方面应发挥重要作用。总之,这项试验性研究表明,PBM 可以安全地加速 5xFAD 小鼠大脑中 Aβ 的淋巴清除,促进 AD 动物神经认知状态的改善,这表明 PBM 可以成为一种有效的 AD 床边疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Optoelectronics
Frontiers of Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
7.80
自引率
0.00%
发文量
583
期刊介绍: Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on. Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics. Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology. ● Presents the latest developments in optoelectronics and optics ● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications ● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more
期刊最新文献
Vehicular Mini-LED backlight display inspection based on residual global context mechanism. Plasma photonic crystal 'kaleidoscope' with flexible control of topology and electromagnetism. Information processing at the speed of light. Quantitative modeling of perovskite-based direct X-ray flat panel detectors. Dual-functional application of Ca2Ta2O7:Bi3+/Eu3+ phosphors in multicolor tunable optical thermometry and WLED.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1