Pub Date : 2025-01-03DOI: 10.1007/s12200-024-00143-1
Yu Surkov, P Timoshina, I Serebryakova, D Stavtcev, I Kozlov, G Piavchenko, I Meglinski, A Konovalov, D Telyshev, S Kuznetcov, E Genina, V Tuchin
Current study presents an advanced method for improving the visualization of subsurface blood vessels using laser speckle contrast imaging (LSCI), enhanced through principal component analysis (PCA) filtering. By combining LSCI and laser speckle entropy imaging with PCA filtering, the method effectively separates static and dynamic components of the speckle signal, significantly improving the accuracy of blood flow assessments, even in the presence of static scattering layers located above and below the vessel. Experiments conducted on optical phantoms, with the vessel depths ranging from 0.6 to 2 mm, and in vivo studies on a laboratory mouse ear demonstrate substantial improvements in image contrast and resolution. The method's sensitivity to blood flow velocity within the physiologic range (0.98-19.66 mm/s) is significantly enhanced, while its sensitivity to vessel depth is minimized. These results highlight the method's ability to assess blood flow velocity independently of vessel depth, overcoming a major limitation of conventional LSCI techniques. The proposed approach holds great potential for non-invasive biomedical imaging, offering improved diagnostic accuracy and contrast in vascular imaging. These findings may be particularly valuable for advancing the use of LSCI in clinical diagnostics and biomedical research, where high precision in blood flow monitoring is essential.
{"title":"Laser speckle contrast imaging with principal component and entropy analysis: a novel approach for depth-independent blood flow assessment.","authors":"Yu Surkov, P Timoshina, I Serebryakova, D Stavtcev, I Kozlov, G Piavchenko, I Meglinski, A Konovalov, D Telyshev, S Kuznetcov, E Genina, V Tuchin","doi":"10.1007/s12200-024-00143-1","DOIUrl":"10.1007/s12200-024-00143-1","url":null,"abstract":"<p><p>Current study presents an advanced method for improving the visualization of subsurface blood vessels using laser speckle contrast imaging (LSCI), enhanced through principal component analysis (PCA) filtering. By combining LSCI and laser speckle entropy imaging with PCA filtering, the method effectively separates static and dynamic components of the speckle signal, significantly improving the accuracy of blood flow assessments, even in the presence of static scattering layers located above and below the vessel. Experiments conducted on optical phantoms, with the vessel depths ranging from 0.6 to 2 mm, and in vivo studies on a laboratory mouse ear demonstrate substantial improvements in image contrast and resolution. The method's sensitivity to blood flow velocity within the physiologic range (0.98-19.66 mm/s) is significantly enhanced, while its sensitivity to vessel depth is minimized. These results highlight the method's ability to assess blood flow velocity independently of vessel depth, overcoming a major limitation of conventional LSCI techniques. The proposed approach holds great potential for non-invasive biomedical imaging, offering improved diagnostic accuracy and contrast in vascular imaging. These findings may be particularly valuable for advancing the use of LSCI in clinical diagnostics and biomedical research, where high precision in blood flow monitoring is essential.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"18 1","pages":"1"},"PeriodicalIF":4.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-25DOI: 10.1007/s12200-024-00145-z
Lu Fang
{"title":"Optical logic array: a photonic solution towards universal computing.","authors":"Lu Fang","doi":"10.1007/s12200-024-00145-z","DOIUrl":"10.1007/s12200-024-00145-z","url":null,"abstract":"","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"40"},"PeriodicalIF":4.1,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668712/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-09DOI: 10.1007/s12200-024-00142-2
Huibin Yang, Minhui Xu, Honghui He, Nan Zeng, Jiawei Song, Tongyu Huang, Ziyang Liang, Hui Ma
Achilles tendon injuries, as a widely existing disease, have attracted a lot of research interest. Mueller matrix polarimetry, as a novel label-free quantitative imaging method, has been widely used in various applications of lesion identification and pathological diagnosis. However, focusing on the recovery process of Achilles tendon injuries, current optical imaging methods have not yet achieved the label-free precise identification and quantitative evaluation. In this study, using Mueller matrix polarimetry, various Achilles tendon injury samples were characterized specifically, and the efficacy of different recovery schemes was evaluated accordingly. Experiments indicate that injured Achilles tendons show less phase retardance, larger diattenuation, and relatively disordered orientation. The combination of experiments with Monte Carlo simulation results illustrate the microscopic mechanism of the Achilles tendon recovery process from three aspects, that is, the increased fiber diameter, a more consistent fiber orientation, and greater birefringence induced by more collagen protein. Finally, based on the statistical distribution of polarization measurements, a polarization specific characterization parameter was extracted to construct a label-free image, which cannot only intuitively show the injury and recovery of Achilles tendon samples, but also give a quantitative evaluation of the treatment.
{"title":"Mueller matrix polarimetry for quantitative evaluation of the Achilles tendon injury recovery.","authors":"Huibin Yang, Minhui Xu, Honghui He, Nan Zeng, Jiawei Song, Tongyu Huang, Ziyang Liang, Hui Ma","doi":"10.1007/s12200-024-00142-2","DOIUrl":"10.1007/s12200-024-00142-2","url":null,"abstract":"<p><p>Achilles tendon injuries, as a widely existing disease, have attracted a lot of research interest. Mueller matrix polarimetry, as a novel label-free quantitative imaging method, has been widely used in various applications of lesion identification and pathological diagnosis. However, focusing on the recovery process of Achilles tendon injuries, current optical imaging methods have not yet achieved the label-free precise identification and quantitative evaluation. In this study, using Mueller matrix polarimetry, various Achilles tendon injury samples were characterized specifically, and the efficacy of different recovery schemes was evaluated accordingly. Experiments indicate that injured Achilles tendons show less phase retardance, larger diattenuation, and relatively disordered orientation. The combination of experiments with Monte Carlo simulation results illustrate the microscopic mechanism of the Achilles tendon recovery process from three aspects, that is, the increased fiber diameter, a more consistent fiber orientation, and greater birefringence induced by more collagen protein. Finally, based on the statistical distribution of polarization measurements, a polarization specific characterization parameter was extracted to construct a label-free image, which cannot only intuitively show the injury and recovery of Achilles tendon samples, but also give a quantitative evaluation of the treatment.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"39"},"PeriodicalIF":4.1,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-06DOI: 10.1007/s12200-024-00141-3
A El-Dali, Mohamed I A Othman
In the current work, we investigate a novel technique specialized in stability perturbation theory to analyze the primary variations such as thermal, carrier, elastic, and mechanical waves in photothermal theory. The interface of the non-local semiconductor material is utilized to study the stability analysis. The problem is established using a 1D opto-electronic-thermoelastic deformation in the context of the photo-thermoelasticity (PTE) framework. The Laplace transform method is used to convert the system from the time domain into the frequency domain, and the boundary conditions for the thermal, elastic, and plasma waves are applied to the interface of the medium. The homotopy perturbation method was used as an innovative approach to analyze the stability of the non-local silicon's primary physical fields. The numerical inversion method is applied, yielding many graphs focusing on important numerical factors such as non-local effects, thermo-energy, and thermo-electric coupling parameters. Investigating dual solutions between stable and unstable regions for critical parameters like thermo-electric and thermo-energy coupling factors demonstrates that the homotopy perturbation technique can effectively analyze the stability analysis. The comparison between silicon and germanium is illustrated graphically. Utilizing the homotopy perturbation technique, we can effectively examine the stability of the primary physical variations with the effect of some values for eigenvalues approaches.
{"title":"Influence of the homotopy stability perturbation on physical variations of non-local opto-electronic semiconductor materials.","authors":"A El-Dali, Mohamed I A Othman","doi":"10.1007/s12200-024-00141-3","DOIUrl":"10.1007/s12200-024-00141-3","url":null,"abstract":"<p><p>In the current work, we investigate a novel technique specialized in stability perturbation theory to analyze the primary variations such as thermal, carrier, elastic, and mechanical waves in photothermal theory. The interface of the non-local semiconductor material is utilized to study the stability analysis. The problem is established using a 1D opto-electronic-thermoelastic deformation in the context of the photo-thermoelasticity (PTE) framework. The Laplace transform method is used to convert the system from the time domain into the frequency domain, and the boundary conditions for the thermal, elastic, and plasma waves are applied to the interface of the medium. The homotopy perturbation method was used as an innovative approach to analyze the stability of the non-local silicon's primary physical fields. The numerical inversion method is applied, yielding many graphs focusing on important numerical factors such as non-local effects, thermo-energy, and thermo-electric coupling parameters. Investigating dual solutions between stable and unstable regions for critical parameters like thermo-electric and thermo-energy coupling factors demonstrates that the homotopy perturbation technique can effectively analyze the stability analysis. The comparison between silicon and germanium is illustrated graphically. Utilizing the homotopy perturbation technique, we can effectively examine the stability of the primary physical variations with the effect of some values for eigenvalues approaches.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"38"},"PeriodicalIF":4.1,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142784839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1007/s12200-024-00139-x
Huanjie Cheng, Guosheng Lin, Di Xia, Liyang Luo, Siqi Lu, Changyuan Yu, Bin Zhang
Mid-infrared (MIR) Kerr microcombs are of significant interest for portable dual-comb spectroscopy and precision molecular sensing due to strong molecular vibrational absorption in the MIR band. However, achieving a compact, octave-spanning MIR Kerr microcomb remains a challenge due to the lack of suitable MIR photonic materials for the core and cladding of integrated devices and appropriate MIR continuous-wave (CW) pump lasers. Here, we propose a novel slot concentric dual-ring (SCDR) microresonator based on an integrated chalcogenide glass chip, which offers excellent transmission performance and flexible dispersion engineering in the MIR band. This device achieves both phase-matching and group velocity matching in two separated anomalous dispersion regions, enabling phase-locked, two-color solitons in the MIR region with a commercial 2-μm CW laser as the pump source. Moreover, the spectral locking of the two-color soliton enhances pump wavelength selectivity, providing precise control over soliton dynamics. By leveraging the dispersion characteristics of the SCDR microresonator, we have demonstrated a multi-octave-spanning, two-color soliton microcomb, covering a spectral range from 1156.07 to 5054.95 nm (200 THz) at a -40 dB level, highlighting the versatility and broad applicability of our approach. And the proposed multi-octave MIR frequency comb is relevant for applications such as dual-comb spectroscopy and trace-gas sensing.
{"title":"Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators.","authors":"Huanjie Cheng, Guosheng Lin, Di Xia, Liyang Luo, Siqi Lu, Changyuan Yu, Bin Zhang","doi":"10.1007/s12200-024-00139-x","DOIUrl":"10.1007/s12200-024-00139-x","url":null,"abstract":"<p><p>Mid-infrared (MIR) Kerr microcombs are of significant interest for portable dual-comb spectroscopy and precision molecular sensing due to strong molecular vibrational absorption in the MIR band. However, achieving a compact, octave-spanning MIR Kerr microcomb remains a challenge due to the lack of suitable MIR photonic materials for the core and cladding of integrated devices and appropriate MIR continuous-wave (CW) pump lasers. Here, we propose a novel slot concentric dual-ring (SCDR) microresonator based on an integrated chalcogenide glass chip, which offers excellent transmission performance and flexible dispersion engineering in the MIR band. This device achieves both phase-matching and group velocity matching in two separated anomalous dispersion regions, enabling phase-locked, two-color solitons in the MIR region with a commercial 2-μm CW laser as the pump source. Moreover, the spectral locking of the two-color soliton enhances pump wavelength selectivity, providing precise control over soliton dynamics. By leveraging the dispersion characteristics of the SCDR microresonator, we have demonstrated a multi-octave-spanning, two-color soliton microcomb, covering a spectral range from 1156.07 to 5054.95 nm (200 THz) at a -40 dB level, highlighting the versatility and broad applicability of our approach. And the proposed multi-octave MIR frequency comb is relevant for applications such as dual-comb spectroscopy and trace-gas sensing.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"36"},"PeriodicalIF":4.1,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mini-LED backlight has emerged as a promising technology for high performance LCDs, yet the massive detection of dead pixels and precise LEDs placement are constrained by the miniature scale of the Mini-LEDs. The high-resolution network (Hrnet) with mixed dilated convolution and dense upsampling convolution (MDC-DUC) module and a residual global context attention (RGCA) module has been proposed to detect the quality of vehicular Mini-LED backlights. The proposed model outperforms the baseline networks of Unet, Pspnet, Deeplabv3+, and Hrnet, with a mean intersection over union (Miou) of 86.91%. Furthermore, compared to the four baseline detection networks, our proposed model has a lower root-mean-square error (RMSE) when analyzing the position and defective count of Mini-LEDs in the prediction map by canny algorithm. This work incorporates deep learning to support production lines improve quality of Mini-LED backlights.
微型 LED 背光已成为高性能液晶显示器的一项前景广阔的技术,但由于微型 LED 的微型尺寸,大量检测死像素和精确放置 LED 都受到限制。我们提出了带有混合扩张卷积和密集上采样卷积(MDC-DUC)模块和残差全局上下文注意(RGCA)模块的高分辨率网络(Hrnet),用于检测车辆微型 LED 背光的质量。所提出的模型优于 Unet、Pspnet、Deeplabv3+ 和 Hrnet 等基线网络,平均交集大于联合(Miou)为 86.91%。此外,与四个基线检测网络相比,我们提出的模型在使用 canny 算法分析预测图中 Mini-LED 的位置和缺陷数时,具有更低的均方根误差(RMSE)。这项工作结合了深度学习,以支持生产线提高 Mini-LED 背光的质量。
{"title":"Vehicular Mini-LED backlight display inspection based on residual global context mechanism.","authors":"Guobao Zhao, Xi Zheng, Xiao Huang, Yijun Lu, Zhong Chen, Weijie Guo","doi":"10.1007/s12200-024-00140-4","DOIUrl":"10.1007/s12200-024-00140-4","url":null,"abstract":"<p><p>Mini-LED backlight has emerged as a promising technology for high performance LCDs, yet the massive detection of dead pixels and precise LEDs placement are constrained by the miniature scale of the Mini-LEDs. The high-resolution network (Hrnet) with mixed dilated convolution and dense upsampling convolution (MDC-DUC) module and a residual global context attention (RGCA) module has been proposed to detect the quality of vehicular Mini-LED backlights. The proposed model outperforms the baseline networks of Unet, Pspnet, Deeplabv3+, and Hrnet, with a mean intersection over union (Miou) of 86.91%. Furthermore, compared to the four baseline detection networks, our proposed model has a lower root-mean-square error (RMSE) when analyzing the position and defective count of Mini-LEDs in the prediction map by canny algorithm. This work incorporates deep learning to support production lines improve quality of Mini-LED backlights.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"35"},"PeriodicalIF":4.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519276/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Continuous development of photonic crystals (PCs) over the last 30 years has carved out many new scientific frontiers. However, creating tunable PCs that enable flexible control of geometric configurations remains a challenge. Here we present a scheme to produce a tunable plasma photonic crystal (PPC) 'kaleidoscope' with rich diversity of structural configurations in dielectric barrier discharge. Multi-freedom control of the PPCs, including the symmetry, dielectric constant, crystal orientation, lattice constant, topological state, and structures of scattering elements, has been realized. Four types of lattice reconfigurations are demonstrated, including transitions from periodic to periodic, disordered to ordered, non-topological to topological, and striped to honeycomb Moiré lattices. Furthermore, alterations in photonic band structures corresponding to the reconstruction of various PPCs have been investigated. Our system presents a promising platform for generating a PPC 'kaleidoscope', offering benefits such as reduced equipment requirements, low cost, rapid response, and enhanced flexibility. This development opens up new opportunities for both fundamental and applied research.
{"title":"Plasma photonic crystal 'kaleidoscope' with flexible control of topology and electromagnetism.","authors":"Jing Wang, Shuang Liu, Weili Fan, Shuo Wang, Cuicui Lu, Yafeng He, Fucheng Liu, Xiaoyong Hu","doi":"10.1007/s12200-024-00137-z","DOIUrl":"https://doi.org/10.1007/s12200-024-00137-z","url":null,"abstract":"<p><p>Continuous development of photonic crystals (PCs) over the last 30 years has carved out many new scientific frontiers. However, creating tunable PCs that enable flexible control of geometric configurations remains a challenge. Here we present a scheme to produce a tunable plasma photonic crystal (PPC) 'kaleidoscope' with rich diversity of structural configurations in dielectric barrier discharge. Multi-freedom control of the PPCs, including the symmetry, dielectric constant, crystal orientation, lattice constant, topological state, and structures of scattering elements, has been realized. Four types of lattice reconfigurations are demonstrated, including transitions from periodic to periodic, disordered to ordered, non-topological to topological, and striped to honeycomb Moiré lattices. Furthermore, alterations in photonic band structures corresponding to the reconstruction of various PPCs have been investigated. Our system presents a promising platform for generating a PPC 'kaleidoscope', offering benefits such as reduced equipment requirements, low cost, rapid response, and enhanced flexibility. This development opens up new opportunities for both fundamental and applied research.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"34"},"PeriodicalIF":4.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485005/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-29DOI: 10.1007/s12200-024-00133-3
Muhammad AbuGhanem
In recent years, quantum computing has made significant strides, particularly in light-based technology. The introduction of quantum photonic chips has ushered in an era marked by scalability, stability, and cost-effectiveness, paving the way for innovative possibilities within compact footprints. This article provides a comprehensive exploration of photonic quantum computing, covering key aspects such as encoding information in photons, the merits of photonic qubits, and essential photonic device components including light squeezers, quantum light sources, interferometers, photodetectors, and waveguides. The article also examines photonic quantum communication and internet, and its implications for secure systems, detailing implementations such as quantum key distribution and long-distance communication. Emerging trends in quantum communication and essential reconfigurable elements for advancing photonic quantum internet are discussed. The review further navigates the path towards establishing scalable and fault-tolerant photonic quantum computers, highlighting quantum computational advantages achieved using photons. Additionally, the discussion extends to programmable photonic circuits, integrated photonics and transformative applications. Lastly, the review addresses prospects, implications, and challenges in photonic quantum computing, offering valuable insights into current advancements and promising future directions in this technology.
{"title":"Information processing at the speed of light.","authors":"Muhammad AbuGhanem","doi":"10.1007/s12200-024-00133-3","DOIUrl":"10.1007/s12200-024-00133-3","url":null,"abstract":"<p><p>In recent years, quantum computing has made significant strides, particularly in light-based technology. The introduction of quantum photonic chips has ushered in an era marked by scalability, stability, and cost-effectiveness, paving the way for innovative possibilities within compact footprints. This article provides a comprehensive exploration of photonic quantum computing, covering key aspects such as encoding information in photons, the merits of photonic qubits, and essential photonic device components including light squeezers, quantum light sources, interferometers, photodetectors, and waveguides. The article also examines photonic quantum communication and internet, and its implications for secure systems, detailing implementations such as quantum key distribution and long-distance communication. Emerging trends in quantum communication and essential reconfigurable elements for advancing photonic quantum internet are discussed. The review further navigates the path towards establishing scalable and fault-tolerant photonic quantum computers, highlighting quantum computational advantages achieved using photons. Additionally, the discussion extends to programmable photonic circuits, integrated photonics and transformative applications. Lastly, the review addresses prospects, implications, and challenges in photonic quantum computing, offering valuable insights into current advancements and promising future directions in this technology.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"33"},"PeriodicalIF":4.1,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439970/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of 103 μCGy-1⋅cm-2. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 μCGy-1air⋅cm-2, the requirements on dark current density ranges from 10 to 100 nA⋅cm-2 and the fluctuation of current density should fall in 0.21 to 1.37 nA⋅cm-2.
基于半导体的直接 X 射线探测器在追求更高的成像质量方面引起了研究人员的极大关注。然而,以往的许多研究都侧重于探测性能的优化,却很少从整体上观察和分析它们将如何影响探测量子效率(DQE)值。在此,我们提出了一个数值模型,该模型显示了 DQE 与 X 射线探测器和电路特性之间的定量关系。我们的研究结果表明,仅仅追求高灵敏度是没有意义的。要将医用 X 射线剂量降低 80%,对 X 射线灵敏度的要求仅为 103 μCGy-1-cm-2。要在 X 射线灵敏度为 1248 至 8171 μCGy-1air⋅cm-2 的空气中达到 DQE = 0.7,对暗电流密度的要求为 10 至 100 nA⋅cm-2 不等,电流密度的波动应在 0.21 至 1.37 nA⋅cm-2 之间。
{"title":"Quantitative modeling of perovskite-based direct X-ray flat panel detectors.","authors":"Zihao Song, Gaozhu Wang, Jincong Pang, Zhiping Zheng, Ling Xu, Ying Zhou, Guangda Niu, Jiang Tang","doi":"10.1007/s12200-024-00136-0","DOIUrl":"https://doi.org/10.1007/s12200-024-00136-0","url":null,"abstract":"<p><p>Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of 10<sup>3</sup> μCGy<sup>-1</sup>⋅cm<sup>-2</sup>. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 μCGy<sup>-1</sup><sub>air</sub>⋅cm<sup>-2</sup>, the requirements on dark current density ranges from 10 to 100 nA⋅cm<sup>-2</sup> and the fluctuation of current density should fall in 0.21 to 1.37 nA⋅cm<sup>-2</sup>.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"32"},"PeriodicalIF":4.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}