Gene regulation supporting sociality shared across lineages and variation in complexity.

IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Genome Pub Date : 2024-04-01 Epub Date: 2023-12-14 DOI:10.1139/gen-2023-0054
Benjamin C Pyenson, Sandra M Rehan
{"title":"Gene regulation supporting sociality shared across lineages and variation in complexity.","authors":"Benjamin C Pyenson, Sandra M Rehan","doi":"10.1139/gen-2023-0054","DOIUrl":null,"url":null,"abstract":"<p><p>Across evolutionary lineages, insects vary in social complexity, from those that exhibit extended parental care to those with elaborate divisions of labor. Here, we synthesize the sociogenomic resources from hundreds of species to describe common gene regulatory mechanisms in insects that regulate social organization across phylogeny and levels of social complexity. Different social phenotypes expressed by insects can be linked to the organization of co-expressing gene networks and features of the epigenetic landscape. Insect sociality also stems from processes like the emergence of parental care and the decoupling of ancestral genetic programs. One underexplored avenue is how variation in a group's social environment affects the gene expression of individuals. Additionally, an experimental reduction of gene expression would demonstrate how the activity of specific genes contributes to insect social phenotypes. While tissue specificity provides greater localization of the gene expression underlying social complexity, emerging transcriptomic analysis of insect brains at the cellular level provides even greater resolution to understand the molecular basis of social insect evolution.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"99-108"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2023-0054","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Across evolutionary lineages, insects vary in social complexity, from those that exhibit extended parental care to those with elaborate divisions of labor. Here, we synthesize the sociogenomic resources from hundreds of species to describe common gene regulatory mechanisms in insects that regulate social organization across phylogeny and levels of social complexity. Different social phenotypes expressed by insects can be linked to the organization of co-expressing gene networks and features of the epigenetic landscape. Insect sociality also stems from processes like the emergence of parental care and the decoupling of ancestral genetic programs. One underexplored avenue is how variation in a group's social environment affects the gene expression of individuals. Additionally, an experimental reduction of gene expression would demonstrate how the activity of specific genes contributes to insect social phenotypes. While tissue specificity provides greater localization of the gene expression underlying social complexity, emerging transcriptomic analysis of insect brains at the cellular level provides even greater resolution to understand the molecular basis of social insect evolution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持跨血统社会性的基因调控和复杂性差异。
在不同的进化世系中,昆虫的社会复杂性各不相同,有的表现出延伸的亲代照料,有的则有精细的劳动分工。在这里,我们综合了来自数百个物种的社会基因组资源,描述了昆虫在不同系统发育和社会复杂性水平上调节社会组织的共同基因调控机制。昆虫表现出的不同社会表型可以与共表达基因网络的组织和表观遗传景观的特征联系起来。昆虫的社会性还源于亲代照料的出现和祖先遗传程序的脱钩等过程。一个尚未充分探索的途径是群体社会环境的变化如何影响个体的基因表达。此外,减少基因表达的实验将证明特定基因的活性如何影响昆虫的社会表型。组织特异性为社会复杂性背后的基因表达提供了更大的定位,而新出现的细胞水平的昆虫大脑转录组分析为了解昆虫社会进化的分子基础提供了更高的分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome
Genome 生物-生物工程与应用微生物
CiteScore
5.30
自引率
3.20%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Genome is a monthly journal, established in 1959, that publishes original research articles, reviews, mini-reviews, current opinions, and commentaries. Areas of interest include general genetics and genomics, cytogenetics, molecular and evolutionary genetics, developmental genetics, population genetics, phylogenomics, molecular identification, as well as emerging areas such as ecological, comparative, and functional genomics.
期刊最新文献
A quick guide to the calcium-dependent protein kinase family in Brassica napus. Plant immune resilience to a changing climate: Molecular insights and biotechnological roadmaps. Identification of full-length genes involved in the biosynthesis of β-caryophyllene and lupeol from the leaf transcriptome of Ayapana triplinervis. An analysis of the gaps in the South African DNA barcoding library of ticks of veterinary and public health importance. Comparative genomic and phylogenetic analysis of the complete mitochondrial genome of Cricula trifenestrata (Helfer) among lepidopteran insects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1