首页 > 最新文献

Genome最新文献

英文 中文
Distinct patterns of satDNA distribution in holocentric chromosomes of spike-sedges (Eleocharis, Cyperaceae). 穗花杉(Eleocharis,茜草科)全中心染色体中 satDNA 分布的不同模式。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-16 DOI: 10.1139/gen-2024-0089
Thaíssa Boldieri de Souza, Letícia Maria Parteka, Yi-Tzu Kuo, Thiago Henrique do Nascimento, Veit Schubert, Andrea Pedrosa-Harand, André Marques, Andreas Houben, André Laforga Vanzela

Eleocharis R. Br. (Cyperaceae) species are known for having holocentric chromosomes, which enable rapid karyotype differentiation. High intra- and interspecific variations in chromosome numbers and genome sizes are documented for different Eleocharis species, frequently accompanied by fluctuations in the repetitive DNA fraction. However, a lack of detailed analysis has hampered a better understanding of the interplay between holocentricity and repetitive DNA evolution in this genus. In our study, we confirmed the holocentricity of Eleocharis chromosomes by immunostaining against the kinetochore protein KNL1 and the cell-cycle dependent posttranslational modifications histone H2AThr121ph and H3S10ph. We further studied the composition and chromosomal distribution of the main satellite DNA repeats found in the newly sequenced species E. maculosa, E. geniculata, E. parodii, E. elegans, and E. montana. Five of the six satellites discovered were arranged in clusters, while EmaSAT14 was distributed irregularly along the chromatid length in a line-like manner. EmaSAT14 monomers were present in a few copies in few species across the Eleocharis phylogenetic tree. Nonetheless, they were accumulated within a restricted group of Maculosae series, subgenus Eleocharis. The data indicates that the amplification and line-like distribution of EmaSAT14 along chromatids may have occurred recently within a section of the genus.

Eleocharis R.Br.(香蒲科)物种以全中心染色体著称,这使得核型的快速分化成为可能。有资料表明,不同 Eleocharis 物种的染色体数目和基因组大小在种内和种间存在很大差异,经常伴随着重复 DNA 部分的波动。然而,由于缺乏详细的分析,人们无法更好地了解该属的全中心性和重复 DNA 演化之间的相互作用。在我们的研究中,我们通过免疫染色法检测动点蛋白KNL1和依赖于细胞周期的翻译后修饰组蛋白H2AThr121ph和H3S10ph,证实了象鼻虫染色体的全中心性。我们进一步研究了在新测序物种E. maculosa、E. geniculata、E. parodii、E. elegans和E. montana中发现的主要卫星DNA重复序列的组成和染色体分布。在发现的六个卫星DNA重复序列中,有五个呈簇状排列,而EmaSAT14则沿染色体长度呈线状不规则分布。EmaSAT14单体在整个榄香属系统发育树中的少数物种中以少量拷贝存在。尽管如此,这些单体还是积聚在荸荠科(Maculosae)的一个局限性群体--荸荠亚属(Eleocharis)中。这些数据表明,EmaSAT14沿染色体的扩增和线状分布可能是最近在该属的一个部分中发生的。
{"title":"Distinct patterns of satDNA distribution in holocentric chromosomes of spike-sedges (Eleocharis, Cyperaceae).","authors":"Thaíssa Boldieri de Souza, Letícia Maria Parteka, Yi-Tzu Kuo, Thiago Henrique do Nascimento, Veit Schubert, Andrea Pedrosa-Harand, André Marques, Andreas Houben, André Laforga Vanzela","doi":"10.1139/gen-2024-0089","DOIUrl":"https://doi.org/10.1139/gen-2024-0089","url":null,"abstract":"<p><p>Eleocharis R. Br. (Cyperaceae) species are known for having holocentric chromosomes, which enable rapid karyotype differentiation. High intra- and interspecific variations in chromosome numbers and genome sizes are documented for different Eleocharis species, frequently accompanied by fluctuations in the repetitive DNA fraction. However, a lack of detailed analysis has hampered a better understanding of the interplay between holocentricity and repetitive DNA evolution in this genus. In our study, we confirmed the holocentricity of Eleocharis chromosomes by immunostaining against the kinetochore protein KNL1 and the cell-cycle dependent posttranslational modifications histone H2AThr121ph and H3S10ph. We further studied the composition and chromosomal distribution of the main satellite DNA repeats found in the newly sequenced species E. maculosa, E. geniculata, E. parodii, E. elegans, and E. montana. Five of the six satellites discovered were arranged in clusters, while EmaSAT14 was distributed irregularly along the chromatid length in a line-like manner. EmaSAT14 monomers were present in a few copies in few species across the Eleocharis phylogenetic tree. Nonetheless, they were accumulated within a restricted group of Maculosae series, subgenus Eleocharis. The data indicates that the amplification and line-like distribution of EmaSAT14 along chromatids may have occurred recently within a section of the genus.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142284426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosomal diversity in Crematogaster Lund, 1831 (Formicidae: Myrmicinae) from the Amazon rainforest. 亚马逊雨林中 Crematogaster Lund, 1831 (Formicidae: Myrmicinae) 的染色体多样性。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-03 DOI: 10.1139/gen-2023-0130
Linda Inês Silveira, Gisele Amaro Teixeira, Luísa Antônia Campos Barros, Jorge Dergam, Hilton Jeferson Alves Cardoso Aguiar

Crematogaster Lund, 1831 is a speciose ant genus globally distributed and easily recognizable. Although biogeographical theories explain some variation among Neotropical Crematogaster, several taxonomical issues remain unresolved. While cytogenetic approaches can help to delimit species, cytogenetic data are only available for 18 taxa. In this study, classical and molecular cytogenetic analyses were performed on five Crematogaster species from the Brazilian Amazon to identify species-specific patterns. Two different cytotypes, both with 2n=22 chromosomes were observed in Crematogaster erecta Mayr, 1866, suggesting the presence of cryptic species, although with different karyotypic formulas. Crematogaster aff. erecta had 2n=28, while C. limata Smith, 1858, C. tenuicula Forel, 1904 and Crematogaster sp. had 2n = 38. The telomeric motif (TTAGG)n was found in all five species, and the (TCAGG)n motif was detected in the telomeres of C. limata. This peculiar motif was also detected in the centromeric regions of C. erecta cytotype I. The microsatellite (GA)n was dispersed in the chromosomes of all species studied which also had a single intrachromosomal rDNA site. The cytogenetic results revealed notable interspecific and intraspecific variation, which suggests different chromosomal rearrangements involved in the origin of these variations, also highlighting the taxonomic value of cytogenetic data on Crematogaster.

Crematogaster Lund, 1831 是一种分布在全球各地的蚂蚁属,很容易辨认。尽管生物地理学理论可以解释新热带 Crematogaster 之间的一些差异,但仍有几个分类学问题尚未解决。虽然细胞遗传学方法有助于划分物种,但目前只有 18 个类群的细胞遗传学数据。本研究对巴西亚马逊地区的 5 个 Crematogaster 种类进行了经典和分子细胞遗传学分析,以确定物种特异性模式。在 Crematogaster erecta Mayr, 1866 中观察到了两种不同的细胞型,染色体均为 2n=22,这表明存在隐性物种,尽管其核型公式不同。Crematogasteraff.erepra的染色体为2n=28,而C. limata Smith, 1858, C. tenuicula Forel, 1904和Crematogaster sp.的染色体为2n=38。在所有五个物种中都发现了端粒图案(TTAGG)n,在C. limata的端粒中检测到了(TCAGG)n图案。微卫星 (GA)n 分散在所研究的所有物种的染色体中,这些物种也有一个染色体内 rDNA 位点。细胞遗传学结果显示了显著的种间和种内变异,这表明这些变异的起源涉及不同的染色体重排,同时也突出了Crematogaster细胞遗传学数据的分类价值。
{"title":"Chromosomal diversity in <i>Crematogaster</i> Lund, 1831 (Formicidae: Myrmicinae) from the Amazon rainforest.","authors":"Linda Inês Silveira, Gisele Amaro Teixeira, Luísa Antônia Campos Barros, Jorge Dergam, Hilton Jeferson Alves Cardoso Aguiar","doi":"10.1139/gen-2023-0130","DOIUrl":"https://doi.org/10.1139/gen-2023-0130","url":null,"abstract":"<p><p><i>Crematogaster</i> Lund, 1831 is a speciose ant genus globally distributed and easily recognizable. Although biogeographical theories explain some variation among Neotropical <i>Crematogaster</i>, several taxonomical issues remain unresolved. While cytogenetic approaches can help to delimit species, cytogenetic data are only available for 18 taxa. In this study, classical and molecular cytogenetic analyses were performed on five <i>Crematogaster</i> species from the Brazilian Amazon to identify species-specific patterns. Two different cytotypes, both with 2n=22 chromosomes were observed in <i>Crematogaster erecta</i> Mayr, 1866, suggesting the presence of cryptic species, although with different karyotypic formulas. <i>Crematogaster</i> aff. erecta had 2n=28, while<i> C. limata</i> Smith, 1858, <i>C. tenuicula</i> Forel, 1904 and <i>Crematogaster </i>sp. had 2n = 38. The telomeric motif (TTAGG)<sub>n</sub> was found in all five species, and the (TCAGG)<sub>n</sub> motif was detected in the telomeres of <i>C. limata</i>. This peculiar motif was also detected in the centromeric regions of <i>C. erecta</i> cytotype I. The microsatellite (GA)<sub>n</sub> was dispersed in the chromosomes of all species studied which also had a single intrachromosomal rDNA site. The cytogenetic results revealed notable interspecific and intraspecific variation, which suggests different chromosomal rearrangements involved in the origin of these variations, also highlighting the taxonomic value of cytogenetic data on <i>Crematogaster</i>.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced representation bisulfite sequencing (RRBS) analysis reveals variation in distribution and levels of DNA methylation in white birch (Betula papyrifera) exposed to nickel. 还原表征亚硫酸氢盐测序(RRBS)分析揭示了暴露于镍的白桦树(Betula papyrifera)DNA甲基化分布和水平的变化。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-03 DOI: 10.1139/gen-2024-0019
Kabwe Nkongolo, Paul Michael

Research in understanding the role of genetics and epigenetics in plant adaptations to environmental stressors such as metals is still in its infancy. The objective of the present study is to assess the effect of nickel on DNA methylation level and distribution in white birch (Betula papyrifera Marshall) using reduced representation bisulfite sequencing (RRBS). The distribution of methylated C sites of each sample revealed that the level of methylation was much higher in CG context varying between 54% and 65%, followed by CHG (24%-31.5%), and then CHH with the methylation rate between 3.3% and 5.2%. The analysis of differentially methylated regions (DMR) revealed that nickel induced both hypermethylation and hypomethylation when compared to water. Detailed analysis showed for the first time that nickel induced a higher level of hypermethylation compared to controls, while potassium triggers a higher level of hypomethylation compared to nickel. Surprisingly, the analysis of the distribution of DMRs revealed that 38%-42% were located in gene bodies, 20%-24% in exon, 19%-20% in intron, 16%-17% in promoters, and 0.03%-0.04% in transcription start site. RRBS was successful in detecting and mapping DMR in plants exposed to nickel.

了解遗传学和表观遗传学在植物适应环境胁迫(如金属)中的作用的研究仍处于起步阶段。本研究的目的是利用还原表征亚硫酸氢盐测序(RRBS)评估镍对白桦树(Betula papyrifera Marshall)DNA甲基化水平和分布的影响。每个样本的甲基化 C 位点分布显示,CG 背景的甲基化水平更高,介于 54% 和 65% 之间,其次是 CHG(24%-31.5%),然后是 CHH,甲基化率介于 3.3% 和 5.2% 之间。对差异甲基化区域(DMR)的分析表明,与水相比,镍同时诱导了高甲基化和低甲基化。详细分析首次表明,与对照组相比,镍诱导的高甲基化水平更高,而与镍相比,钾诱导的低甲基化水平更高。令人惊讶的是,对DMRs分布的分析表明,38%-42%位于基因体,20%-24%位于外显子,19%-20%位于内含子,16%-17%位于启动子,0.03%-0.04%位于转录起始位点。RRBS 成功地检测并绘制了暴露于镍的植物的 DMR 图谱。
{"title":"Reduced representation bisulfite sequencing (RRBS) analysis reveals variation in distribution and levels of DNA methylation in white birch (<i>Betula papyrifera</i>) exposed to nickel.","authors":"Kabwe Nkongolo, Paul Michael","doi":"10.1139/gen-2024-0019","DOIUrl":"https://doi.org/10.1139/gen-2024-0019","url":null,"abstract":"<p><p>Research in understanding the role of genetics and epigenetics in plant adaptations to environmental stressors such as metals is still in its infancy. The objective of the present study is to assess the effect of nickel on DNA methylation level and distribution in white birch (<i>Betula papyrifera</i> Marshall) using reduced representation bisulfite sequencing (RRBS). The distribution of methylated C sites of each sample revealed that the level of methylation was much higher in CG context varying between 54% and 65%, followed by CHG (24%-31.5%), and then CHH with the methylation rate between 3.3% and 5.2%. The analysis of differentially methylated regions (DMR) revealed that nickel induced both hypermethylation and hypomethylation when compared to water. Detailed analysis showed for the first time that nickel induced a higher level of hypermethylation compared to controls, while potassium triggers a higher level of hypomethylation compared to nickel. Surprisingly, the analysis of the distribution of DMRs revealed that 38%-42% were located in gene bodies, 20%-24% in exon, 19%-20% in intron, 16%-17% in promoters, and 0.03%-0.04% in transcription start site. RRBS was successful in detecting and mapping DMR in plants exposed to nickel.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilizing selection and mitochondrial heteroplasmy in the Canada lynx (Lynx canadensis). 加拿大猞猁(Lynx canadensis)的稳定选择和线粒体异形。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-03 DOI: 10.1139/gen-2023-0094
Krystyn J Forbes, McIntyre A Barrera, Karsten Nielsen-Roine, Evan W Hersh, Jasmine K Janes, William L Harrower, Jamieson C Gorrell

Mitochondrial DNA is commonly used in population genetic studies to investigate spatial structure, intraspecific variation, and phylogenetic relationships. The control region is the most rapidly evolving and largest non-coding region, but its analysis can be complicated by heteroplasmic signals of genome duplication in many mammals, including felids. Here, we describe the presence of heteroplasmy in the control region of Canada lynx (Lynx canadensis) through intra-individual sequence variation. Our results demonstrate multiple haplotypes of varying length in each lynx, resulting from different copy numbers of the repetitive sequence RS-2 and suggest possible heteroplasmic single nucleotide polymorphisms (SNPs) in both repetitive sequences RS-2 and RS-3. Intra-individual variation was only observed in the repetitive sequences while inter-individual variation was detected in the flanking regions outside of the repetitive sequences, indicating that heteroplasmic mutations are restricted to these repeat regions. Although each lynx displayed multiple haplotypes of varying length, we found the most common variant contained three complete copies of the RS-2 repeat unit, suggesting copy number is regulated by stabilizing selection. While genome duplication offers potential for increased diversity, heteroplasmy may lead to a selective advantage or detriment in the face of mitochondrial function and disease, which could have significant implications for wildlife populations experiencing decline (e.g., bottlenecks) as a result of habitat modification or climate change.

线粒体 DNA 常用于群体遗传研究,以调查空间结构、种内变异和系统发育关系。控制区是进化最迅速、面积最大的非编码区,但在包括猫科动物在内的许多哺乳动物中,基因组复制的异质信号会使控制区的分析变得复杂。在这里,我们通过个体内序列变异描述了加拿大猞猁(Lynx canadensis)控制区异质的存在。我们的研究结果表明,每只猞猁体内都存在多个长度不等的单倍型,这是由重复序列 RS-2 的不同拷贝数造成的,并提示重复序列 RS-2 和 RS-3 中可能存在异质单核苷酸多态性(SNP)。只在重复序列中观察到了个体内变异,而在重复序列之外的侧翼区域则检测到了个体间变异,这表明异质突变仅限于这些重复区域。虽然每只猞猁都表现出多种不同长度的单倍型,但我们发现最常见的变异包含 RS-2 重复单元的三个完整拷贝,这表明拷贝数受稳定选择的调控。虽然基因组复制提供了增加多样性的潜力,但在面对线粒体功能和疾病时,异体可能会导致选择性优势或劣势,这可能会对由于栖息地改变或气候变化而经历衰退(如瓶颈)的野生动物种群产生重大影响。
{"title":"Stabilizing selection and mitochondrial heteroplasmy in the Canada lynx (<i>Lynx canadensis</i>).","authors":"Krystyn J Forbes, McIntyre A Barrera, Karsten Nielsen-Roine, Evan W Hersh, Jasmine K Janes, William L Harrower, Jamieson C Gorrell","doi":"10.1139/gen-2023-0094","DOIUrl":"https://doi.org/10.1139/gen-2023-0094","url":null,"abstract":"<p><p>Mitochondrial DNA is commonly used in population genetic studies to investigate spatial structure, intraspecific variation, and phylogenetic relationships. The control region is the most rapidly evolving and largest non-coding region, but its analysis can be complicated by heteroplasmic signals of genome duplication in many mammals, including felids. Here, we describe the presence of heteroplasmy in the control region of Canada lynx (<i>Lynx canadensis</i>) through intra-individual sequence variation. Our results demonstrate multiple haplotypes of varying length in each lynx, resulting from different copy numbers of the repetitive sequence RS-2 and suggest possible heteroplasmic single nucleotide polymorphisms (SNPs) in both repetitive sequences RS-2 and RS-3. Intra-individual variation was only observed in the repetitive sequences while inter-individual variation was detected in the flanking regions outside of the repetitive sequences, indicating that heteroplasmic mutations are restricted to these repeat regions. Although each lynx displayed multiple haplotypes of varying length, we found the most common variant contained three complete copies of the RS-2 repeat unit, suggesting copy number is regulated by stabilizing selection. While genome duplication offers potential for increased diversity, heteroplasmy may lead to a selective advantage or detriment in the face of mitochondrial function and disease, which could have significant implications for wildlife populations experiencing decline (e.g., bottlenecks) as a result of habitat modification or climate change.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosome mapping of retrotransposon AviRTE in a neotropical bird species: Trogon surrucura (Trogoniformes; Trogonidae). 新热带鸟类逆转录转座子 AviRTE 的染色体图谱:Trogon surrucura (Trogoniformes; Trogonidae)。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-05-09 DOI: 10.1139/gen-2023-0075
Nairo Farias de Farias, Ricardo José Gunski, Analía Del Valle Garnero, Andrés Delgado Cañedo, Edivaldo Herculano Correa de Oliveira, Fábio Augusto Oliveira Silva, Fabiano Pimentel Torres

Avian genomes are characterized as being more compact than other amniotes, with less diversity and density of transposable elements (TEs). In addition, birds usually show bimodal karyotypes, exhibiting a great variation in diploid numbers. Some species present unusually large sex chromosomes, possibly due to the accumulation of repetitive sequences. Avian retrotransposon-like element (AviRTE) is a long interspersed nuclear element (LINE) recently discovered in the genomes of birds and nematodes, and it is still poorly characterized in terms of chromosomal mapping and phylogenetic relationships. In this study, we mapped AviRTE isolated from the Trogon surrucura genome into the T. surrucura (TSU) karyotype. Furthermore, we analyzed the phylogenetic relationships of this LINE in birds and other vertebrates. Our results showed that the distribution pattern of AviRTE is not restricted to heterochromatic regions, with accumulation on the W chromosome of TSU, yet another species with an atypical sex chromosome and TE hybridization. The phylogenetic analysis of AviRTE sequences in birds agreed with the proposed phylogeny of species in most clades, and allowed the detection of this sequence in other species, expanding the distribution of the element.

鸟类基因组的特点是比其他羊膜动物更为紧凑,转座元件(TE)的多样性和密度较低。此外,鸟类通常呈现双峰核型,二倍体数目差异很大。一些物种的性染色体异常巨大,可能是由于重复序列的积累。AviRTE是最近在鸟类和线虫基因组中发现的一种长穿插核元素(LINE),它在染色体图谱和系统发育关系方面的特征还很不清楚。在这项研究中,我们将从Trogon surrucura基因组中分离出来的AviRTE映射到T.此外,我们还分析了该LINE在鸟类和其他脊椎动物中的系统发育关系。我们的结果表明,AviRTE的分布模式并不局限于异染色质区域,它在TSU的W染色体上也有积累,而TSU是另一个具有非典型性染色体和TE杂交的物种。鸟类中 AviRTE 序列的系统发育分析与大多数支系中物种的系统发育建议一致,并允许在其他物种中检测到该序列,从而扩大了该元素的分布范围。
{"title":"Chromosome mapping of retrotransposon AviRTE in a neotropical bird species: <i>Trogon surrucura</i> (Trogoniformes; Trogonidae).","authors":"Nairo Farias de Farias, Ricardo José Gunski, Analía Del Valle Garnero, Andrés Delgado Cañedo, Edivaldo Herculano Correa de Oliveira, Fábio Augusto Oliveira Silva, Fabiano Pimentel Torres","doi":"10.1139/gen-2023-0075","DOIUrl":"10.1139/gen-2023-0075","url":null,"abstract":"<p><p>Avian genomes are characterized as being more compact than other amniotes, with less diversity and density of transposable elements (TEs). In addition, birds usually show bimodal karyotypes, exhibiting a great variation in diploid numbers. Some species present unusually large sex chromosomes, possibly due to the accumulation of repetitive sequences. Avian retrotransposon-like element (AviRTE) is a long interspersed nuclear element (LINE) recently discovered in the genomes of birds and nematodes, and it is still poorly characterized in terms of chromosomal mapping and phylogenetic relationships. In this study, we mapped AviRTE isolated from the <i>Trogon surrucura</i> genome into the <i>T. surrucura</i> (TSU) karyotype. Furthermore, we analyzed the phylogenetic relationships of this LINE in birds and other vertebrates. Our results showed that the distribution pattern of AviRTE is not restricted to heterochromatic regions, with accumulation on the W chromosome of TSU, yet another species with an atypical sex chromosome and TE hybridization. The phylogenetic analysis of AviRTE sequences in birds agreed with the proposed phylogeny of species in most clades, and allowed the detection of this sequence in other species, expanding the distribution of the element.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosomal and genomic analysis suggests single origin and high molecular differentiation of the B chromosome of Abracris flavolineata. 染色体和基因组分析表明,Abracris flavolineata 的 B 染色体起源单一,分子分化程度较高。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-05-09 DOI: 10.1139/gen-2023-0122
Diogo Milani, Ana Elisa Gasparotto, Vilma Loreto, Dardo A Martí, Diogo C Cabral-de-Mello

Supernumerary chromosomes (B chromosomes) have been an intriguing subject of study. Our understanding of the molecular differentiation of B chromosomes from an interpopulation perspective remains limited, with most analyses involving chromosome banding and mapping of a few sequences. To gain insights into the molecular composition, origin, and evolution of B chromosomes, we conducted cytogenetic and next-generation sequencing analysis of the repeatome in the grasshopper Abracris flavolineata across various populations. Our results unveiled the presence of B chromosomes in two newly investigated populations and described new satellite DNA sequences. While we observed some degree of genetic connection among A. flavolineata populations, our comparative analysis of genomes with and without B chromosomes provided evidence of two new B chromosome variants. These variants exhibited distinct compositions of various repeat classes, including transposable elements and satellite DNAs. Based on shared repeats, their chromosomal location, and the C-positive heterochromatin content on the B chromosome, these variants likely share a common origin but have undergone distinct molecular differentiation processes, resulting in varying degrees of heterochromatinization. Our data serve as a detailed example of the dynamic and differentiated nature of B chromosome molecular content at the interpopulation level, even when they share a common origin.

超常染色体(B 染色体)一直是一个引人入胜的研究课题。从种群间的角度来看,我们对 B 染色体分子分化的了解仍然有限,大多数分析都涉及染色体条带和少数序列的图谱绘制。为了深入了解 B 染色体的分子组成、起源和进化,我们对蚱蜢 Abracris flavolineata 不同种群的重复序列组进行了细胞遗传学和新一代测序分析。我们的研究结果揭示了两个新调查种群中 B 染色体的存在,并描述了新的卫星 DNA 序列。虽然我们观察到黄铃虫种群之间存在一定程度的遗传联系,但我们对含有和不含 B 染色体的基因组进行的比较分析提供了两个新的 B 染色体变体的证据。这些变体表现出不同的重复类组成,包括转座元件和卫星 DNA。根据共享的重复序列、它们的染色体位置以及 B 染色体上 C 阳性异染色质的含量,这些变体很可能具有共同的起源,但经历了不同的分子分化过程,导致了不同程度的异染色质化。我们的数据是 B 染色体分子含量在种群间水平的动态和分化性质的一个详细例子,即使它们有共同的起源。
{"title":"Chromosomal and genomic analysis suggests single origin and high molecular differentiation of the B chromosome of <i>Abracris flavolineata</i>.","authors":"Diogo Milani, Ana Elisa Gasparotto, Vilma Loreto, Dardo A Martí, Diogo C Cabral-de-Mello","doi":"10.1139/gen-2023-0122","DOIUrl":"10.1139/gen-2023-0122","url":null,"abstract":"<p><p>Supernumerary chromosomes (B chromosomes) have been an intriguing subject of study. Our understanding of the molecular differentiation of B chromosomes from an interpopulation perspective remains limited, with most analyses involving chromosome banding and mapping of a few sequences. To gain insights into the molecular composition, origin, and evolution of B chromosomes, we conducted cytogenetic and next-generation sequencing analysis of the repeatome in the grasshopper <i>Abracris flavolineata</i> across various populations. Our results unveiled the presence of B chromosomes in two newly investigated populations and described new satellite DNA sequences. While we observed some degree of genetic connection among <i>A. flavolineata</i> populations, our comparative analysis of genomes with and without B chromosomes provided evidence of two new B chromosome variants. These variants exhibited distinct compositions of various repeat classes, including transposable elements and satellite DNAs. Based on shared repeats, their chromosomal location, and the C-positive heterochromatin content on the B chromosome, these variants likely share a common origin but have undergone distinct molecular differentiation processes, resulting in varying degrees of heterochromatinization. Our data serve as a detailed example of the dynamic and differentiated nature of B chromosome molecular content at the interpopulation level, even when they share a common origin.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of defensin genes across house fly (Musca domestica) life history gives insight into immune system subfunctionalization. 家蝇(Musca domestica)生命史中防御素基因的表达深入揭示了免疫系统的亚功能化。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-05-09 DOI: 10.1139/gen-2024-0016
Danial Asgari, Tanya Purvis, Victoria Pickens, Christopher Saski, Richard P Meisel, Dana Nayduch

Animals encounter diverse microbial communities throughout their lifetime, which exert varying selection pressures. Antimicrobial peptides (AMPs), which lyse or inhibit microbial growth, are a first line of defense against some of these microbes. Here we examine how developmental variation in microbial exposure has affected the evolution of expression and amino acid sequences of Defensins (an ancient class of AMPs) in the house fly (Musca domestica). The house fly is a well-suited model for this work because it trophically associates with varying microbial communities throughout its life history and its genome contains expanded families of AMPs, including Defensins. We identified two subsets of house fly Defensins: one expressed in larvae or pupae, and the other expressed in adults. The amino acid sequences of these two Defensin subsets form distinct monophyletic clades, and they are located in separate gene clusters in the genome. The adult-expressed Defensins evolve faster than larval/pupal Defensins, consistent with different selection pressures across developmental stages. Our results therefore suggest that varied microbial communities encountered across life history can shape the evolutionary trajectories of immune genes.

动物在一生中会遇到不同的微生物群落,这些微生物群落会施加不同的选择压力。抗菌肽(AMPs)能裂解或抑制微生物的生长,是抵御某些微生物的第一道防线。在这里,我们研究了微生物暴露的发育变异如何影响家蝇(Musca domestica)中防御素(一类古老的 AMPs)的表达和氨基酸序列的进化。家蝇是一个非常适合开展这项工作的模型,因为它在整个生命历程中会与不同的微生物群落发生滋养关系,而且它的基因组中含有更多的 AMPs 家族,包括 Defensins。我们发现了两个家蝇 Defensins 子集:一个在幼虫或蛹中表达,另一个在成虫中表达。这两个防御素亚群的氨基酸序列形成了不同的单系支系,它们分别位于基因组中不同的基因簇中。成虫表达的卫矛素比幼虫/蛹的卫矛素进化得更快,这与不同发育阶段的选择压力是一致的。因此,我们的研究结果表明,在整个生命历程中遇到的不同微生物群落可以塑造免疫基因的进化轨迹。
{"title":"Expression of defensin genes across house fly (<i>Musca domestica</i>) life history gives insight into immune system subfunctionalization.","authors":"Danial Asgari, Tanya Purvis, Victoria Pickens, Christopher Saski, Richard P Meisel, Dana Nayduch","doi":"10.1139/gen-2024-0016","DOIUrl":"10.1139/gen-2024-0016","url":null,"abstract":"<p><p>Animals encounter diverse microbial communities throughout their lifetime, which exert varying selection pressures. Antimicrobial peptides (AMPs), which lyse or inhibit microbial growth, are a first line of defense against some of these microbes. Here we examine how developmental variation in microbial exposure has affected the evolution of expression and amino acid sequences of Defensins (an ancient class of AMPs) in the house fly (<i>Musca domestica</i>). The house fly is a well-suited model for this work because it trophically associates with varying microbial communities throughout its life history and its genome contains expanded families of AMPs, including Defensins. We identified two subsets of house fly Defensins: one expressed in larvae or pupae, and the other expressed in adults. The amino acid sequences of these two Defensin subsets form distinct monophyletic clades, and they are located in separate gene clusters in the genome. The adult-expressed Defensins evolve faster than larval/pupal Defensins, consistent with different selection pressures across developmental stages. Our results therefore suggest that varied microbial communities encountered across life history can shape the evolutionary trajectories of immune genes.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fragments derived from non-coding RNAs: how complex is genome regulation? 非编码 RNA 片段:基因组调控有多复杂?
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2024-04-29 DOI: 10.1139/gen-2023-0136
Miguel Ángel Velázquez-Flores, Ruth Ruiz Esparza-Garrido

The human genome is highly dynamic and only a small fraction of it codes for proteins, but most of the genome is transcribed, highlighting the importance of non-coding RNAs on cellular functions. In addition, it is now known the generation of non-coding RNA fragments under particular cellular conditions and their functions have revealed unexpected mechanisms of action, converging, in some cases, with the biogenic pathways and action machineries of microRNAs or Piwi-interacting RNAs. This led us to the question why the cell produces so many apparently redundant molecules to exert similar functions and regulate apparently convergent processes? However, non-coding RNAs fragments can also function similarly to aptamers, with secondary and tertiary conformations determining their functions. In the present work, it was reviewed and analyzed the current information about the non-coding RNAs fragments, describing their structure and biogenic pathways, with special emphasis on their cellular functions.

人类基因组是高度动态的,其中只有一小部分编码蛋白质,但大部分基因组都是转录的,这凸显了非编码 RNA 对细胞功能的重要性。此外,现在人们已经知道,在特定的细胞条件下,非编码 RNAs 片段的生成及其功能已被揭示出意想不到的作用机制,在某些情况下,与 microRNAs 或 Piwi-interacting RNAs 的生物生成途径和作用机制趋于一致。这让我们不禁要问,为什么细胞会产生这么多看似多余的分子来发挥类似的功能和调控看似趋同的过程?然而,非编码 RNAs 片段也可以发挥与适配体类似的功能,二级和三级构象决定了它们的功能。本研究回顾并分析了目前有关非编码 RNAs 片段的信息,描述了它们的结构和产生它们的生物途径,并特别强调了它们的细胞功能。
{"title":"Fragments derived from non-coding RNAs: how complex is genome regulation?","authors":"Miguel Ángel Velázquez-Flores, Ruth Ruiz Esparza-Garrido","doi":"10.1139/gen-2023-0136","DOIUrl":"10.1139/gen-2023-0136","url":null,"abstract":"<p><p>The human genome is highly dynamic and only a small fraction of it codes for proteins, but most of the genome is transcribed, highlighting the importance of non-coding RNAs on cellular functions. In addition, it is now known the generation of non-coding RNA fragments under particular cellular conditions and their functions have revealed unexpected mechanisms of action, converging, in some cases, with the biogenic pathways and action machineries of microRNAs or Piwi-interacting RNAs. This led us to the question why the cell produces so many apparently redundant molecules to exert similar functions and regulate apparently convergent processes? However, non-coding RNAs fragments can also function similarly to aptamers, with secondary and tertiary conformations determining their functions. In the present work, it was reviewed and analyzed the current information about the non-coding RNAs fragments, describing their structure and biogenic pathways, with special emphasis on their cellular functions.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140864971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking the spatial and genomic structure of adaptive potential for conservation management: a review. 将适应潜力的空间结构和基因组结构联系起来进行保护管理:综述。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-31 DOI: 10.1139/gen-2024-0036
Avneet Kaur Chhina, Niloufar Abhari, Arne Mooers, Jayme Lewthwaite

We unified the recent literature with the goal to contribute to the discussion on how genetic diversity might best be conserved. We argue that this decision will be guided by how genomic variation is distributed among manageable populations (i.e. its spatial structure), the degree to which adaptive potential is best predicted by variation across the entire genome or the subset of that variation that is identified as putatively adaptive (i.e. its genomic structure), and whether we are managing species as single entities or as collections of diversifying lineages. The distribution of genetic variation and our ultimate goal will have practical implications for on-the-ground management. If adaptive variation is largely polygenic or responsive to change, its spatial structure might be broadly governed by the forces determining genome-wide variation (linked selection, drift, and gene flow), making measurement and prioritization straightforward. If we are managing species as single entities, then population-level prioritization schemes are possible so as to maximize future pooled genetic variation. We outline one such scheme based on the popular Shapley Value from cooperative game theory that considers the relative genetic contribution of a population to an unknown future collection of populations.

我们统一了近期的文献,目的是为关于如何最好地保护遗传多样性的讨论做出贡献。我们认为,基因组变异在可管理种群中的分布情况(即其空间结构)、整个基因组的变异在多大程度上能最好地预测适应潜力,或变异中被确定为可能具有适应性的子集(即其基因组结构),以及我们是将物种作为单一实体还是作为多样化品系的集合来管理,都将对这一决策产生指导作用。基因变异的分布和我们的最终目标将对实地管理产生实际影响。如果适应性变异在很大程度上是多基因变异或对变化的反应性变异,其空间结构可能会受到决定全基因组变异的力量(关联选择、漂移和基因流)的广泛制约,从而使测量和优先排序变得简单明了。如果我们将物种作为单一实体进行管理,那么种群层面的优先排序方案是可行的,这样可以最大限度地增加未来的集合遗传变异。我们根据合作博弈论中流行的夏普利值(Shapley Value)概述了这样一种方案,它考虑了一个种群对未来未知种群集合的相对遗传贡献。
{"title":"Linking the spatial and genomic structure of adaptive potential for conservation management: a review.","authors":"Avneet Kaur Chhina, Niloufar Abhari, Arne Mooers, Jayme Lewthwaite","doi":"10.1139/gen-2024-0036","DOIUrl":"https://doi.org/10.1139/gen-2024-0036","url":null,"abstract":"<p><p>We unified the recent literature with the goal to contribute to the discussion on how genetic diversity might best be conserved. We argue that this decision will be guided by how genomic variation is distributed among manageable populations (i.e. its spatial structure), the degree to which adaptive potential is best predicted by variation across the entire genome or the subset of that variation that is identified as putatively adaptive (i.e. its genomic structure), and whether we are managing species as single entities or as collections of diversifying lineages. The distribution of genetic variation and our ultimate goal will have practical implications for on-the-ground management. If adaptive variation is largely polygenic or responsive to change, its spatial structure might be broadly governed by the forces determining genome-wide variation (linked selection, drift, and gene flow), making measurement and prioritization straightforward. If we are managing species as single entities, then population-level prioritization schemes are possible so as to maximize future pooled genetic variation. We outline one such scheme based on the popular Shapley Value from cooperative game theory that considers the relative genetic contribution of a population to an unknown future collection of populations.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Genomic and Phylogenetic Analysis of the Complete Mitochondrial Genome of Cricula trifenestrata (Helfer) Among Lepidopteran Insects. 鳞翅目昆虫中 Cricula trifenestrata (Helfer) 完整线粒体基因组的比较基因组学和系统发生学分析。
IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-24 DOI: 10.1139/gen-2023-0037
Deepika Singh, Ponnala Vimal Mosahari, Pragya Sharma, Kartik Neog, Utpal Bora

Cricula trifenestrata Helfer (commonly known as Amphutukoni muga/Cricula silkworm), a wild sericigenous insect produces golden yellow silk similar to Antheraea assamensis (muga silkworm), with significant potential as a natural fiber and biomaterial. Cricula is considered as a pest as it competes for food with muga, which produces the prized golden silk. This study focuses on decoding the mitochondrial genome of C. trifenestrata using next-generation sequencing technology and includes comparative analysis with Bombycoids and other lepidopteran insects. We found that the Cricula mitogenome spans 15,425 bp and exhibits typical gene content and arrangement consistent with other Saturniids and lepidopterans. All protein-coding genes were found to undergo purifying selection, with the highest and lowest conservation observed in the cox1 and atp8 gene respectively, indicating their potential role in future evolutionary events. We identified two types of mismatches: 23 "G-U" and 6 "U-U" pairs, similar to those found in Actias selene among the Saturniids. Additionally, our study uncovered the presence of two 33 bp repeat units and a 'TTAGA' motif in the control region, in contrast to the typical 'ATAGA' motif, suggesting functional similarity with evolving sequences. Furthermore, phylogenetic analysis supports the close relationship of Cricula with other species within the Saturniidae family.

Cricula trifenestrata Helfer(俗称 Amphutukoni muga/Cricula蚕)是一种野生蚕媒昆虫,可生产与 Antheraea assamensis(Muga蚕)相似的金黄色丝绸,具有作为天然纤维和生物材料的巨大潜力。蟋蟀茧蚕被视为一种害虫,因为它要与生产珍贵金丝的穆加蚕争夺食物。本研究的重点是利用新一代测序技术解码 C. trifenestrata 的线粒体基因组,包括与 Bombycoids 和其他鳞翅目昆虫的比较分析。我们发现,蟋蟀有丝分裂基因组的长度为 15,425 bp,其基因含量和排列方式与其他土星目昆虫和鳞翅目昆虫一致。我们发现所有蛋白质编码基因都经历了纯化选择,其中 cox1 和 atp8 基因的保护程度分别最高和最低,这表明它们在未来的进化事件中可能发挥作用。我们发现了两种类型的错配:我们发现了两类错配:23 对 "G-U "和 6 对 "U-U",这与土星人中的 Actias selene 发现的错配相似。此外,我们的研究还发现在控制区存在两个 33 bp 的重复单元和一个 "TTAGA "图案,与典型的 "ATAGA "图案不同,这表明与进化序列存在功能上的相似性。此外,系统发育分析还支持蟋蟀与土鳖虫科其他物种的密切关系。
{"title":"Comparative Genomic and Phylogenetic Analysis of the Complete Mitochondrial Genome of Cricula trifenestrata (Helfer) Among Lepidopteran Insects.","authors":"Deepika Singh, Ponnala Vimal Mosahari, Pragya Sharma, Kartik Neog, Utpal Bora","doi":"10.1139/gen-2023-0037","DOIUrl":"https://doi.org/10.1139/gen-2023-0037","url":null,"abstract":"<p><p>Cricula trifenestrata Helfer (commonly known as Amphutukoni muga/Cricula silkworm), a wild sericigenous insect produces golden yellow silk similar to Antheraea assamensis (muga silkworm), with significant potential as a natural fiber and biomaterial. Cricula is considered as a pest as it competes for food with muga, which produces the prized golden silk. This study focuses on decoding the mitochondrial genome of C. trifenestrata using next-generation sequencing technology and includes comparative analysis with Bombycoids and other lepidopteran insects. We found that the Cricula mitogenome spans 15,425 bp and exhibits typical gene content and arrangement consistent with other Saturniids and lepidopterans. All protein-coding genes were found to undergo purifying selection, with the highest and lowest conservation observed in the cox1 and atp8 gene respectively, indicating their potential role in future evolutionary events. We identified two types of mismatches: 23 \"G-U\" and 6 \"U-U\" pairs, similar to those found in Actias selene among the Saturniids. Additionally, our study uncovered the presence of two 33 bp repeat units and a 'TTAGA' motif in the control region, in contrast to the typical 'ATAGA' motif, suggesting functional similarity with evolving sequences. Furthermore, phylogenetic analysis supports the close relationship of Cricula with other species within the Saturniidae family.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Genome
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1