An overview of machine learning and deep learning techniques for predicting epileptic seizures.

IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Integrative Bioinformatics Pub Date : 2023-12-15 eCollection Date: 2023-12-01 DOI:10.1515/jib-2023-0002
Marco Zurdo-Tabernero, Ángel Canal-Alonso, Fernando de la Prieta, Sara Rodríguez, Javier Prieto, Juan Manuel Corchado
{"title":"An overview of machine learning and deep learning techniques for predicting epileptic seizures.","authors":"Marco Zurdo-Tabernero, Ángel Canal-Alonso, Fernando de la Prieta, Sara Rodríguez, Javier Prieto, Juan Manuel Corchado","doi":"10.1515/jib-2023-0002","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is a neurological disorder (the third most common, following stroke and migraines). A key aspect of its diagnosis is the presence of seizures that occur without a known cause and the potential for new seizures to occur. Machine learning has shown potential as a cost-effective alternative for rapid diagnosis. In this study, we review the current state of machine learning in the detection and prediction of epileptic seizures. The objective of this study is to portray the existing machine learning methods for seizure prediction. Internet bibliographical searches were conducted to identify relevant literature on the topic. Through cross-referencing from key articles, additional references were obtained to provide a comprehensive overview of the techniques. As the aim of this paper aims is not a pure bibliographical review of the subject, the publications here cited have been selected among many others based on their number of citations. To implement accurate diagnostic and treatment tools, it is necessary to achieve a balance between prediction time, sensitivity, and specificity. This balance can be achieved using deep learning algorithms. The best performance and results are often achieved by combining multiple techniques and features, but this approach can also increase computational requirements.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10777364/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2023-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy is a neurological disorder (the third most common, following stroke and migraines). A key aspect of its diagnosis is the presence of seizures that occur without a known cause and the potential for new seizures to occur. Machine learning has shown potential as a cost-effective alternative for rapid diagnosis. In this study, we review the current state of machine learning in the detection and prediction of epileptic seizures. The objective of this study is to portray the existing machine learning methods for seizure prediction. Internet bibliographical searches were conducted to identify relevant literature on the topic. Through cross-referencing from key articles, additional references were obtained to provide a comprehensive overview of the techniques. As the aim of this paper aims is not a pure bibliographical review of the subject, the publications here cited have been selected among many others based on their number of citations. To implement accurate diagnostic and treatment tools, it is necessary to achieve a balance between prediction time, sensitivity, and specificity. This balance can be achieved using deep learning algorithms. The best performance and results are often achieved by combining multiple techniques and features, but this approach can also increase computational requirements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测癫痫发作的机器学习和深度学习技术概述。
癫痫是一种神经系统疾病(继中风和偏头痛之后的第三大常见疾病)。其诊断的一个关键方面是在没有已知病因的情况下出现癫痫发作,以及可能出现新的癫痫发作。机器学习已显示出作为一种经济有效的快速诊断替代方法的潜力。在本研究中,我们回顾了机器学习在检测和预测癫痫发作方面的现状。本研究的目的是描绘用于癫痫发作预测的现有机器学习方法。我们在互联网上进行了文献检索,以确定该主题的相关文献。通过对主要文章的交叉引用,获得了更多参考文献,以提供有关技术的全面概述。由于本文的目的不是对该主题进行纯粹的文献综述,因此本文引用的出版物是根据引用次数从众多出版物中挑选出来的。要实施准确的诊断和治疗工具,必须在预测时间、灵敏度和特异性之间取得平衡。这种平衡可以通过深度学习算法来实现。结合多种技术和特征往往能达到最佳性能和效果,但这种方法也会增加计算要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Bioinformatics
Journal of Integrative Bioinformatics Medicine-Medicine (all)
CiteScore
3.10
自引率
5.30%
发文量
27
审稿时长
12 weeks
期刊最新文献
A roadmap for a middleware as a federation service for integrative data retrieval of agricultural data. International symposium on integrative bioinformatics 2024 - editorial. The potential of Mitragyna speciosa leaves as a natural source of antioxidants for disease prevention. MCMVDRP: a multi-channel multi-view deep learning framework for cancer drug response prediction. Leonhard Med, a trusted research environment for processing sensitive research data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1